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LUCA AND ROMAN CS

e 1993. First BSc degree in CS at
Sapienza University

e Most coauthored papers with
Luca (Romans highlighted) :

1. Andrea 6. Pierluigi
Clementi (22) Crescenzi

2. Francesco (10)
Pasquale (15) 7. Shayan Oveis

3. Salil P. Gharan (8)
Vadhan (15) 8. Emanuele

4. Luca Natale (8)
Becchetti 9. Riccardo
(14) Silvestri (8)

5. Madhu 10. ...

Sudan (10)



LUCA & ME

e Meetingin Rome
since 2013

e 2016. Simons'
Counting Complexity
and Phase Transitions
Program

e 2018. Simons' The
Brain and
Computation Program




ROMANS + LUCAT

Simple dynamics for plurality consensus. SPAA 2014.

Stabilizing Consensus with Many Opinions. SODA 2016.

Find Your Place: Simple Distributed Algorithms for Community Detection. SODA 2017.
Average Whenever You Meet: Opportunistic Protocols for Community Detection. ESA
2018.

Finding a Bounded-Degree Expander Inside a Dense One. SODA 2020.

Consensus vs Broadcast, with and Without Noise. ITCS 2020.

Expansion and Flooding in Dynamic Random Networks with Node Churn. ICDCS 2021.
Percolation and Epidemic Processes in One-Dimensional Small-World Networks.
LATIN 2022.

Bond Percolation in Small-World Graphs with Power-Law Distribution. SAND 2023.
On the Role of Memory in Robust Opinion Dynamics. IJCAI 2023.

The Minority Dynamics and the Power of Synchronicity. SODA 2024.



COMPUTATION IN SIMPLE SYSTEMS



A computational lens on how
global behavior emerges from
simple local interactions among individuals
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LUCA'S WORK ON SOME DYNAMICS

PULL Model. At each round each agent %35 X ¥
observes the state of h other randomly chosen ¢ 5
agents 2 ¥e

R
e Anonymous agents Examples:

e few possible states
e simple update function f of observed
agents

e

3-Majority

More on Dynamics:

e Becchetti et al. Consensus Dynamics: An Overview. I:> o :
2020. o _ ococe ()
e Mossel & Tamuz. Opinion exchange dynamics. 2017. Averaging

e Shah. Gossip Algorithms. 2007.



MAJORITY DYNAMICS

What's the convergence time
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MAJORITY DYNAMICS

—

What's the convergence time
with k colors?

Supporting nodes
in initial config

c1 C2 ...

Theorem [SPAA'14, SODA ’16]. n agents, k colors:

e From configuration with bias (1/kn log n), 3-Majority
converges to plurality in O(klogn) rounds w.h.p.

o h-Majority requires Q(k/h?) to converge

e 3-Majority reaches almost-consensus even against @(n@(l))
adversary.
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COMMUNITY DETECTION

Stochastic Block Model (SBM). Communities ‘p ’ . . p’
V1 and V; of size n/2 such that: & @

Reconstruction

generated by the SBM,
reconstruct original
partition.

Exact reconstruction possible if \/p — ,/q = \/2 logn/n (cfr.
survey Abbe 2017 JMLR).
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COMMUNITY DETECTION FASTER THAN
MIXING TIME

e Community structure
encoded in eigenvectors

e Efficiently computing them

requires mixing time*

e Reconstruction should be
easy when mixing time large...

*: time it takes for a random walk to converge to stationary
distribution
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AVERAGING DYNAMICS

All nodes at each round
update their value z(t) to
average of neighbors:

®+QIQ+Q=@

(O)
[
20 = | (1) —
. e
\O)
1st eigenvecis (1, ..., 1) and 2nd eigenvec. for nice graphs is
~(1,...,1,-1,...,—1)

After mixing time averaging converges to weighted global
average [Boyd et al. 2006].
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COMMUNITY DETECTION WITH
AVERAGING DYNAMICS

IIIIII Labe: @ W @ B B B

Att = 0, randomly pick value z(t) € {+1, —1}.

Then, at each round:

* Setvalue z(t) to average of neighbors,

e Ateach step, set label to blue if z(t) < x(t — 1), red
otherwise.



AVERAGING DYNAMICS ON THE SBM

b-regular bipartite

Theorem [SIAM J. Comp. 2020]. Let ¢ be a connected

(2n, d, b)-clustered regular graph with 2nd eigenvalue

Ao > (1 + €) max;>3 |\;| for some & > 0. Then Averaging
yields strong reconstruction within O(log n) rounds w.h.p.
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COMM. DET. IN POPULATION PROTOCOLS

At each round a random edge is *X:}g% """ *é"
chosen and the two corresponding *3’“ Lo
agents interact. * e Vi “‘l’*

Can we leverage the Averaging Dynamics?

Asynchronous Averaging. If (u, v)

TaNrr

activates at time ¢ then Q’ .
T, (t—1)+z,(t—1 AT TN
z,(t) = z,(t) = ) SRR

[Boyd et al. 2006].

Process variance causes issues... (in 2018).
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COMMUNITY SENSIT

CSL. Runm
independent copies of
the Averaging. Each
node u at time ¢ has
signature:
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COMMUNITY SENSITIVE LABELING
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CSL. Runm
independent copies of
the Averaging. Each
node u at time ¢ has
signature:

[ sign(z{(#)) )

\sign(2\"(t))/
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Thm (Romans+P. Manurangsi+P.
Raghavendra). G regular SBM s.t.

de* > blog n. After ©(log n) rounds
CSLwithm = O(e 1 logn) labels all
nodes but < 4/en s.t. labels

e agree > %in same community

e disagree < %in different
communities



THANK YOU

and thanks to Luca, from all his Roman colleagues




