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How ants perform
collective navigattion?
How do they decide
where to relocate their
nest?

How do flocks of birds
synchronize their flight?
[Chazelle ’09]

How does Physarum polycephalum
finds shortest paths? [Mehlhorn et al. 2012-...]

Biological Distributed Algorithms
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What are Lévy Walks?

Lévy walk. Random walk with i.i.d.
- uniform directions
- power-law step-lengths: for fixed α > 1, for each d ∈ R

f(d) ∼ 1/dα
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What are Lévy Walks?

Lévy walk. Random walk with i.i.d.
- uniform directions
- power-law step-lengths: for fixed α > 1, for each d ∈ R

(random walk/brownian motion) (straight/ballistic walk) (between (a) and (b))

normal diffusion ballistic diffusion super diffusion

2 < α < 31 < α ≤ 23 ≤ α

f(d) ∼ 1/dα
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Optimality of Lévy Walk

Formal scenario:

• a density distribution ρ
in Rn describing food
locations

• an uninformed walker
searching for food in Rn

R

R

??
?

Question: which strategy maximizes the expected
food discovery rate (number of discovered food
locations over travelled distance)?
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Optimality of Lévy Walk

Result: in order to maximize the expected food discovery
rate, the walker should perform the Lévy walk with
exponent α = 2.

Formal scenario:

• a density distribution ρ
in Rn describing food
locations

• an uninformed walker
searching for food in Rn

R

R

??
?

Question: which strategy maximizes the expected
food discovery rate (number of discovered food
locations over travelled distance)?
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The ANTS Problem

[Korman et al., PODC, ’12] introduces the Ants Nearby
Treasure Search (ANTS) Problem

Setting:

• k (mutually) independent walkers (agents) start
moving on Z2 from the origin

• time is synchronous and marked by a global clock
• one special node T ∈ Z2, the treasure, at

(Manhattan) distance ` from the origin
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The ANTS Problem

[Korman et al., PODC, ’12] introduces the Ants Nearby
Treasure Search (ANTS) Problem

Setting:

• k (mutually) independent walkers (agents) start
moving on Z2 from the origin

• time is synchronous and marked by a global clock
• one special node T ∈ Z2, the treasure, at

(Manhattan) distance ` from the origin

Question: which strategy is the best one to find the
treasure?



6 - 1

Preliminaries: Total Work

Definition (work): k agents moving for t steps make a
work equal to k · t

work = total path covered
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Preliminaries: Total Work

Definition (work): k agents moving for t steps make a
work equal to k · t

work = total path covered

Lemma [Korman et al., PODC, ’12]. Locate T u.a.r. at
Manhattan distance at most `. For any k ≥ 1, and for any
search algorithm, the required work to find T is Ω

(
`2
)
, both

with constant probability and in expectation.
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The Harmonic Search Algorithm

[Korman et al., PODC, ’12] proposes a search algorithm
which is almost optimal and which is natural

The Harmonic Search algorithm:

(a) sample a jump-length d
with prob cα/d

α

(b) (ballistic diffusion) in d
steps, move to a destination
at distance d chosen u.a.r.

(c) (normal diffusion) start a
spiral search for dα+1 steps

(d) return at the origin and
repeat from (a)

(α > 1 fixed)
ballistic diffusion

spiral search

starting node

final node

ballistic
destination
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Our Results: Analysis of Discerete Lévy Walks

k parallel Lévy walks with exponent α ∈ (2, 3) start from
origin.
Target at distance `, s.t. (ln `)c ≤ k ≤ ` (universal c).

With prob. going to 1 w.r.t. k and `:

Let α∗ = 3− ln k
ln ` .

• If α ' α∗, then at least one walk finds target within
(`2/k) · (ln `)c steps.

• If α & α?, then no walk finds target within (`2/k) · `β
steps, where β ' (α− α∗)/2.

• If α . α?, then target is never found, by any walk.

Theorem.
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Optimal, Simple Algorithm for the ANTS Problem

Optimal solution to the ANTS problem (up to polylogs):

Each agent chooses uniformly and independently at
random an exponent α ∈ (2, 3) and then performs a Lévy
walk with parameter α.
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Optimal, Simple Algorithm for the ANTS Problem

• Definition of discrete version of the Lévy walk
• Analysis of k Lévy walks for the ANTS Problem
• For any α > 1 there is a k s.t. k Lévy walks achieve

optimal work
• The exponent α = 2 is not so “universal” !
• Optimal and natural algorithm for the ANTS Problem

Key points of Lévy Walk project.

Optimal solution to the ANTS problem (up to polylogs):

Each agent chooses uniformly and independently at
random an exponent α ∈ (2, 3) and then performs a Lévy
walk with parameter α.
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