Biological Distributed Algorithms and Lévy Walks

Emanuele Natale

COATI

Joint work with A. Clementi (U. of Rome Tor Vergata), Francesco D'Amore (COATI), and G. Giakkoupis (WIDE Team, INRIA Rennes)

25 March 2021


Biological Distributed Algorithms

How do flocks of birds synchronize their flight? [Chazelle '09]

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

How ants perform collective navigattion? How do they decide where to relocate their nest?

What are Lévy Walks?

Lévy walk. Random walk with i.i.d.

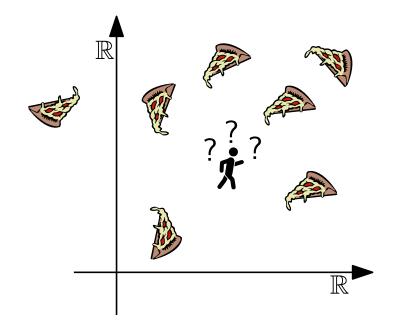
- uniform directions
- power-law step-lengths: for fixed $\alpha>1,$ for each $d\in\mathbb{R}$

 $f(d) \sim 1/d^\alpha$

What are Lévy Walks?

Lévy walk. Random walk with i.i.d.

- uniform directions
- power-law step-lengths: for fixed $\alpha>1,$ for each $d\in\mathbb{R}$

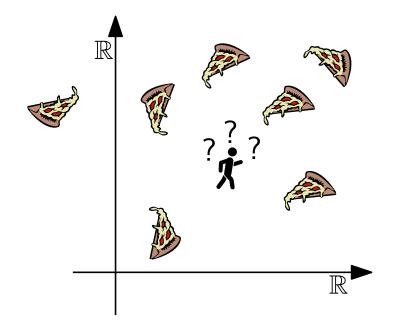

 $f(d) \sim 1/d^\alpha$

ballistic diffusion normal diffusion super diffusion (random walk/brownian motion) (straight/ballistic walk) (between (a) and (b)) $3 \leq \alpha$ $1 < \alpha \leq 2$ $2 < \alpha < 3$

Optimality of Lévy Walk

Formal scenario:

- a density distribution ρ in \mathbb{R}^n describing food locations
- an uninformed walker searching for food in \mathbb{R}^n



Question: which strategy maximizes the expected food discovery rate (number of discovered food locations over travelled distance)?

Optimality of Lévy Walk

Formal scenario:

- a density distribution ρ in \mathbb{R}^n describing food locations
- an uninformed walker searching for food in \mathbb{R}^n

Question: which strategy maximizes the expected food discovery rate (number of discovered food locations over travelled distance)?

Result: in order to maximize the expected food discovery rate, the walker should perform the Lévy walk with exponent $\alpha = 2$.

The ANTS Problem

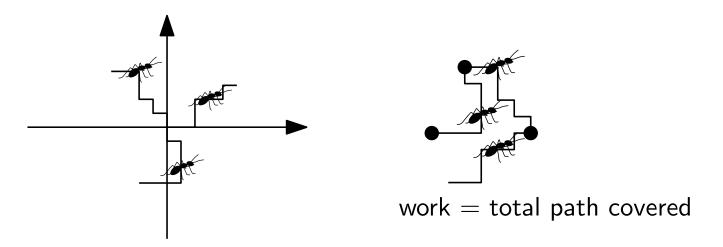
[*Korman et al.*, PODC, '12] introduces the Ants Nearby Treasure Search (ANTS) Problem

Setting:

- k (mutually) independent walkers (agents) start moving on \mathbb{Z}^2 from the origin
- time is synchronous and marked by a global clock
- <u>one</u> special node $\mathcal{T} \in \mathbb{Z}^2$, the *treasure*, at (Manhattan) distance ℓ from the origin

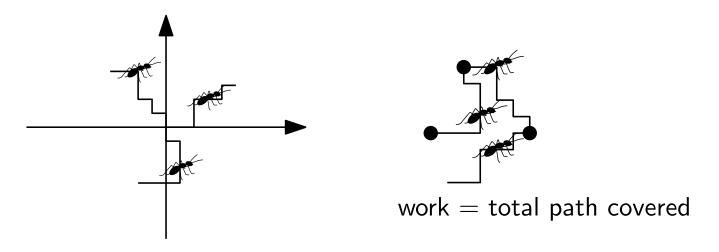
The ANTS Problem

[*Korman et al.*, PODC, '12] introduces the Ants Nearby Treasure Search (ANTS) Problem


Setting:

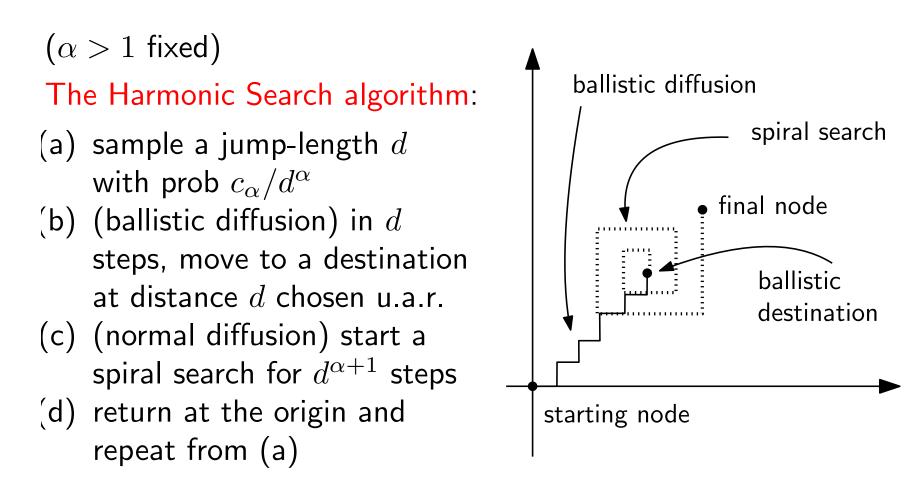
- k (mutually) independent walkers (agents) start moving on \mathbb{Z}^2 from the origin
- time is synchronous and marked by a global clock
- <u>one</u> special node $\mathcal{T} \in \mathbb{Z}^2$, the *treasure*, at (Manhattan) distance ℓ from the origin

Question: which strategy is the **best one** to find the treasure?


Preliminaries: Total Work

Definition (*work*): k agents moving for t steps make a work equal to $k \cdot t$

Preliminaries: Total Work


Definition (*work*): k agents moving for t steps make a work equal to $k \cdot t$

Lemma [Korman et al., PODC, '12]. Locate \mathcal{T} u.a.r. at Manhattan distance at most ℓ . For any $k \ge 1$, and for any search algorithm, the required work to find \mathcal{T} is $\Omega(\ell^2)$, both with constant probability and in expectation.

The Harmonic Search Algorithm

[Korman et al., PODC, '12] proposes a search algorithm which is almost optimal and which is *natural*

Our Results: Analysis of Discerete Lévy Walks

Theorem.

k parallel Lévy walks with exponent $\alpha \in (2,3)$ start from origin.

Target at distance ℓ , s.t. $(\ln \ell)^c \leq k \leq \ell$ (universal c).

Let
$$\alpha^* = 3 - \frac{\ln k}{\ln \ell}$$
.

With prob. going to 1 w.r.t. k and ℓ :

- If $\alpha \simeq \alpha^*$, then at least one walk finds target within $(\ell^2/k) \cdot (\ln \ell)^c$ steps.
- If $\alpha \gtrsim \alpha^*$, then no walk finds target within $(\ell^2/k) \cdot \ell^\beta$ steps, where $\beta \simeq (\alpha - \alpha^*)/2$.
- If $\alpha \leq \alpha^*$, then target is never found, by any walk.

Optimal, Simple Algorithm for the ANTS Problem

Optimal solution to the ANTS problem (up to polylogs):

Each agent chooses uniformly and independently at random an exponent $\alpha \in (2,3)$ and then performs a Lévy walk with parameter α .

Optimal, Simple Algorithm for the ANTS Problem

Optimal solution to the ANTS problem (up to polylogs):

Each agent chooses uniformly and independently at random an exponent $\alpha \in (2,3)$ and then performs a Lévy walk with parameter α .

Key points of Lévy Walk project.

- Definition of discrete version of the Lévy walk
- Analysis of k Lévy walks for the ANTS Problem
- For any $\alpha > 1$ there is a k s.t. k Lévy walks achieve optimal work
- The exponent $\alpha = 2$ is not so "universal" !
- Optimal and natural algorithm for the ANTS Problem

A CARACTER A