~
[Hd..... COATI & biwia—

Finding a Bounded-Degree Expander
Inside a Dense One

eeeeeeeeeeeeeeee

Emanuele Natale
Joint work with L. Becchetti, A. Clementi,
F. Pasquale and L. Trevisan

COATI Group Seminar
26 March 2019

~ 3
[HE=... COATI & liwta—

Outline

Definitions: Graph
Expansion

Motivation for this work
Our Results

Crash Course on
Encoding Arguments

Some Proof Ideas

Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7

3/23

Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

3/23

Graph Expansion I

What is a good measure of connectedness for a set ot

nodes S7?

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

Problem: big sets are better than small ones

AN
‘v
AR

O/
V'
9

2N

M\
Q< | st
AKX
“‘VA Vs V“

S

/

O\

)
\

AN/T\/
A $b~‘
SR
“"’,

)
&
%

"l

NA/
X

WA/ TN/
NS
“\1 77~

3/23

Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7

| \>sd)
<X

DA
>

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

'n\
A

Y
00
N/
%

N
7 N N1/
) X
17/ v,

‘.
v,

X

SO
A

Z]
\
WK
N AV‘
XS

Problem: big sets are better than small ones

{
A
%

P
>

N
R~

D
S
y

/

o Attempt 2. We also divide by the sum of its

degrees vol(S) =) g dy: 6(582/(5)8)

uesS

3/23

Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

%
D 1"2

RS
A‘VA‘ 'AV. E\

/

Problem: big sets are better than small ones

,,
o'l
XK
O
X

S N

215
P

O/
XN/
2o

o

o Attempt 2. We also divide by the sum of its

degrees vol(S) =) g dy: 6(582/(5)5)

uesS

Problem: Very big sets have big vol(.9)

3/23

Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7

{
s
%

4:;/

\ >

%
RN

A

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

AN
‘Ji
D\
5%
~A
%

5N
\\Y/

Problem: big sets are better than small ones

{
C
g

'w‘" “'
\ KV
RKA

AV4 N /)
SOOI

D
S
y

o Attempt 2. We also divide by the sum of its

degrees vol(S) =) g dy: 6(582/(5)5)

/
\

uesS

Problem: Very big sets have big vol(.9)

o Attempt 3. We consider the “worst” between

. e(S,V—-S5)
Sand V — 5 min{vol(S),vol(V—S)}

3/23

Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7

{
s
%

4:;/

\ >

%
RN

A

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

AN
‘Ji
D\
5%
~A
%

5N
\\Y/

Problem: big sets are better than small ones

{
C
g

'w‘" “'
\ KV
RKA

AV4 N /)
SOOI

D
S
y

o Attempt 2. We also divide by the sum of its

degrees vol(S) =) g dy: 6(582/(5)5)

/
\

uesS

Problem: Very big sets have big vol(.9)

o Attempt 3. We consider the “worst” between
Sand V — S: el5,V =5

min{vol(S),vol(V—S)} — sconductance

3/23

Graph Expansion II

e(S,V—-25)
min{vol(S),vol(V—S)}

d(S) = e(féxg)S) assuming S < 3

In regular graphs is equivalent to

4/23

Graph Expansion II

e(S,V—-25) . .
nT00l(9) 0ol (V5] 15 equivalent to

d(S) = e(fg}/(g)s) assuming S < §

In regular graphs

Interpretation. In regular graphs, ¢(S) =

Pr(random walk on random node of S exits it

4/23

Graph Expansion II

e(S,V—-25) . .
In regular graphs —- T5ol(8) ol (V=5)T 18 equivalent to

d(S) = e(fé}/(;f) assuming S < §

Interpretation. In regular graphs, ¢(S) =

Pr(random walk on random node of S exits it

Graph G is e-expander if ming ¢(S) > €

4/23

Graph Expansion II

e(S,V—-25) . .
In regular graphs —- T5ol(8) ol (V=5)T 18 equivalent to

d(S) = e(fé}/(;)S) assuming S < §

Interpretation. In regular graphs, ¢(S) =

Pr(random walk on random node of S exits it

Graph G is e-expander if ming ¢(S) > €

Example: O O
.
In an Erds-Rényi graph G,, ,, ‘Cé%) @
include each edge with prob p. éj Zb é é}
O L2
= A
O (& O

O

4/23

Graph Expansion II

e(S,V—-25) . .
nT00l(9) 0ol (V5] 15 equivalent to

d(S) = e(fé}/(;f) assuming S < §

In regular graphs

Interpretation. In regular graphs, ¢(S) =

Pr(random walk on random node of S exits it

Graph G is e-expander if ming ¢(S) > €

Example:

In an Erés-Rényi graph G, ,,
include each edge with prob p.

For any p > 107% ™ they are good

expanders with high probability.

4/23

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

5/23

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a A-regular
eraph with 2nd-largest eigenvalue of adjecency

matrix A\ :
e(S.9) < |S|(1312 + 2)

5/23

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a A-regular
eraph with 2nd-largest eigenvalue of adjecency

matrix A\ :
e(S.9) < |S|(1312 + 2)

Prootf.

A adjacency matrix,
1¢ indicator vector of .S,
J all-1 matrix.

5/23

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a A-regular
eraph with 2nd-largest eigenvalue of adjecency

matrix A\ : g
e(,5) <[S|(5 % + 3)
Proof. A
L 1a(=J)1
A adjacency matrix, 15Alg s(5J)Ls
1¢ indicator vector of .S, f f

J all-1 matrix. 2¢(S, S) — 2|92

5/23

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a A-regular
eraph with 2nd-largest eigenvalue of adjecency

matrix A : g
e(S,5) < |SI(51% + 3)
Proof. N
T 1 J)1
A adjacency matrix, 15Als s(nd)ls
1s indicator vector of S, f \ f2
J all-1 matrix. 2e(5,5) — 415
=15(A—2J)1s
2nd-largest <)\Hlst _)\‘S‘

eigenvalue >/

5/23

Motivations for this Work 1

Distributed construction of constant-degree expanders

Corollary of
Marcus-Spielman-Srivastava
proot’s of the
Kadison-Singer conjecture
[Ann. of Math. ’15]:

Every dense expander has a constant-degree subgraph
which is also an expander.

6/23

Motivations for this Work 1

Distributed construction of constant-degree expanders

Corollary of
Marcus-Spielman-Srivastava
proot’s of the
Kadison-Singer conjecture
[Ann. of Math. ’15]:

Every dense expander has a constant-degree subgraph
which is also an expander.

But the proof is non-constructive:
How to find the low-degree sub-expander?

6/23

Motivations for this Work 11

Several works propose complicated distributed
construction of expanders:

o Law and Siu [INFOCOM’03]: incremental

construction using Hamiltonian cycles

7/23

Motivations for this Work 11

Several works propose complicated distributed
construction of expanders:

o Law and Siu [INFOCOM’03]: incremental

construction using Hamiltonian cycles

o Allen-Zhu et al. [SODA’16]: start with a
(2(log n)-regular graph and increase its expansion

Ue—oU u v
: —_—
we——e 2 w Z

7/23

Bonus Motivations

o Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

8/23

Bonus Motivations

o Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

e Model creation of overlay
networks in protocols such as
BitTorrent (P2P) or Bitcoin
(distributed ledgers)

8/23

Bonus Motivations

o Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

e Model creation of overlay
networks in protocols such as
BitTorrent (P2P) or Bitcoin
(distributed ledgers)

e Distributed construction of constant-degree graph implies
constant-load balancing algorithm.

Previous works: almost-tight load balancing in poly time
(Berenbrink et al., SPAA’14)

8/23

Algorithm Request - Accept if Enough Space

Algorithm RAES(G, d, ¢) for each node v:

e Set d,,+ = 0 and assume connections are directed

o At the start of each round,
if (doyr < d) then
send d — d,,; requests to random neighbors

At the end of each round

if (current requests + new ones < cd) then
accept all request

else
reject all current requests

if (dout = d) then

forget edge orientation

() 1 is missing 2 connections.
u asks to connect to w and v.

Example P
with d =5 E Eu.:‘"bfgf\. v has already cd incoming connections

and refuses u’s requests.
9/23

Our Result

Theorem.

Foreveryd > 1,0<a <1, ¢c> é, and an-regular
egraph G, w.h.p.

RAES(G,d,c) runs in O(logn) parallel rounds

with message complexity is O(n).

Moreover, if G’s 2nd-largest eigenvalue A\ of
normalized adjacency matrix is < ea?, then w.h.p.
RAES(G,d,c) creates a e-expander with degrees
between d and d(c+1).

10/23

Our Result

Theorem.

Foreveryd > 1,0<a <1, ¢c> %, and an-regular
egraph G, w.h.p.

RAES(G,d,c) runs in O(logn) parallel rounds

with message complexity is O(n).

Moreover, if G’s 2nd-largest eigenvalue A\ of
normalized adjacency matrix is < ea?, then w.h.p.
RAES(G,d,c) creates a e-expander with degrees
between d and d(c+1).

Proof Technique: Encoding Argument
(omitted: message complexity using martingale theory)

10/23

Encoding Arguments

Encoding Lemma.

If X finite set and

C': X —{0,1}* a (partial &
prefix-free) encoding of X then

Pr Cl)| <log|X| —s) <277
P (0G| < log X] -) <

11/23

Encoding Arguments

Encoding Lemma.

If X finite set and

C': X —{0,1}* a (partial &
prefix-free) encoding of X then

Pr Cl)| <log|X| —s) <277
P (0G| < log X] -) <

log | X |—s
Proof. 2 g|X| < 275,

11/23

Encoding Arguments

Encoding Lemma.

If X finite set and
C': X —{0,1}* a (partial &
prefix-free) encoding of X then

Pr Cl)| <log|X| —s) <277
P (0G| < log X] -) <

log | X |—s
Proof. 2 g|X| < 275,

Suggested reading: P. Morin et al. Encoding
Arguments, ACM Comp. Surveys '17.

11/23

Flip a coin n times: 0110010 - - -.

Encoding Argument |

xample

Probability of logn 4+ s consecutive

heads?

12/23

Encoding Argument Example

Flip a coin n times: 0110010 - - -.

Probability of logn 4+ s consecutive
heads?

Call B a bad substring of logn + s consecutive heads.
Consider encoding C'p for strings containing B:

index 7 of first all other bits of the string except those at
bit of B o entry ¢, 7+ 1,..., 1+ logn+s
logn bits n — (logn + s) bits

12/23

Encoding Argument Example

Flip a coin n times: 0110010 - - -. &

Probability of log n 4+ s consecutive \
heads?

I .

Call B a bad substring of logn + s consecutive heads.
Consider encoding C'p for strings containing B:

index 7 of first all other bits of the string except those at
bit of B o entry ¢, 7+ 1,..., 1+ logn+s
logn bits n — (logn + s) bits

By the Encoding Lemma
Pr(|Cg(z)| <log|X|—s) =Pr(|Cp(x)| <n—s) <279

12/23

Implementation:

For each node %2
v;, array of dI' v3
entries of log A

bits

If RAES doesn’t
terminate In
O(logn) rounds
there exist node

v with a rejected v,
request at each
round

Encoding Arg. for Running Time (Warm Up)

d1' slots of log A random bits

13/23

Encoding for Always-Rejected v

We encode with the following bits

e v’s identity: logn

14/23

Encoding for Always-Rejected v

We encode with the following bits

e v’s identity: logn
e v’s request £,: 2log/t,

14/23

Encoding for Always-Rejected v

We encode with the following bits

e v’s identity: logn
e v’s request £,: 2log/t,

o v’s accepted requests: 2log d’

14/23

Encoding for Always-Rejected v

We encode with the following bits

e v’s identity: logn
o v’s request £,: 2logt,
o v’s accepted requests: 2log d’

e position of v’s accepted requests in £,: log (g"j)

14/23

Encoding for Always-Rejected v

We encode with the following bits
e v’s identity: logn
o v’s request £,: 2logt,
o v’s accepted requests: 2log d’
. , : ly
e position of v’s accepted requests in £,: log (d,)

« destinations of accepted requests: d’ log A

14/23

Encoding for Always-Rejected v

We encode with the following bits
e v’s identity: logn
o v’s request £,: 2logt,
o v’s accepted requests: 2log d’
e position of v’s accepted requests in £,: log (g"j)
« destinations of accepted requests: d’ log A

o destinations of rejected requests: (£, — d’) log n

14/23

Encoding for Always-Rejected v

We encode with the following bits
e v’s identity: logn
o v’s request £,: 2logt,
o v’s accepted requests: 2log d’
e position of v’s accepted requests in /,: log (g"j)
« destinations of accepted requests: d’ log A
o destinations of rejected requests: (¢, — d’)log

Observation: at each round there are at /

most - rejecting nodes

14/23

Encoding for Always-Rejected v

We encode with the following bits
e v’s identity: logn
o v’s request £,: 2logt,
o v’s accepted requests: 2log d’
e position of v’s accepted requests in /,: log (g"j)
« destinations of accepted requests: d’ log A
o destinations of rejected requests: (¢, — d’)log

Observation: at each round there are at /

most - rejecting nodes

After calculations we see that we save
20, log(ac) —logn = Q(logn)

14/23

Encoding Argument for Expansion

Implementation:

For each node %2
v;, array of dI' v3
entries of log A

bits

We show that if
the execution
results in a
non-expander,
then it can be
represented with

ndt log A — h ’
(A(logn) bits dT slots of log A random bits

15/23

Compressing the Non-!

Encoding:
e Randomness of V — S
. Set S: log|S| + log (")

xpanding Set

(7,

“C()n

Nodes n *41prn
V-5 “US.QQ;

Nodes |

in S

16/23

Compressing the Non-!

Encoding:
e Randomness of V — S

. Set S: log|S| + log (")

o Accepted connections:
> ves 2log by +log ()

xpanding Set

(7,

“C()n

Nodes n *41prn
V-5 “US.QQ;

Nodes |

in S

16/23

Compressing the Non-!

Encoding:
e Randomness of V — § Nodes

. Set S: log|S| + log (")

o Accepted connections:

xpanding Set

(7,

“C()n

in Ubre

V-5 OSa. g
&

Nodes |

D ves 2logly, + log (%) in S

o Accepted connections from S to

V=83 cq2log(end) +log (%))
€,: fraction of v’s accepted connections towards V' — S

16/23

Compressing the Non-Expanding Set

Encoding:

Randomness of V — §
Set S: log S| + log (7)

Nodes in

V-5
Accepted connections:
Nodes

D ves 2logly, + log (%) in S

Accepted connections from S to
V=83 cq2log(end) +log (%))

(7,

“C()n

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:

> wes(l—€)dlog((1 —0,)A) +) g €vdlog A

connections to S connections to V' — .S (uncompressed)

0,: fraction of v’s edges

towards V — S in (G

16/23

Encoding:
(/,,
Randomness of V — S ‘1\} od eg - IC%%J“CDS
Set S: log S| + log (7) e

Compressing the Non-Expanding Set

Accepted connections: |
Nodes |

> ves 2logl, +log () in 5 |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (Evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:

> wes(l—€)dlog((1 —0,)A) +) g €vdlog A

connections to S connections to V' — .S (uncompressed)

Rejected t
cjected requests 0,: fraction of v’s edges

towards V — S in (G

16/23

Encoding:

Compressing the Non-Expanding Set

(7,

“C()n

Randomness of V — S

Nodes in Un,

V-5 ©S,
Set S: log|S| + log (%) i

Accepted connections: |
Nodes |

> ves 2logl, +log () in 5 |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (Evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:

> wes(l—€)dlog((1 —0,)A) +) g €vdlog A

connections to S connections to V' — .S (uncompressed)

Rejected t
cjected requests 0,: fraction of v’s edges

Unused randomness towards V — S in GG
(after node’s termination)

16/23

Encoding:

Compressing the Non-Expanding Set

(7,

“C()n

Randomness of V — S

Nodes in Un,

V-5 ©5,
Set S: log|S| + log (%) i

Accepted connections: |
Nodes |

> ves 2logl, +log () in S |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S

D ves(l — €)dlog((1 —dy)A) + > o5 evdlog A

connections to S connections to V' — S (uncompressed)

Rejected t
cjected requests 0,: fraction of v’s edges

Unused randomness towards V — S in GG
(after node’s termination)

16/23

Compressing Accepted Connections I

To represent accepted requests from S we need

Z(l — €,)dlog((1 —9,)A) + Z €,dlog A

vES veES
1 —¢

< sdlog A — sdlog = + eds
S

— 1
where e = - > o€,

17/23

Compressing Accepted Connections I

To represent accepted requests from S we need

Z(l — €,)dlog((1 —9,)A) + Z €,dlog A

vES veES
1 —¢

< sdlog A — sdlog = + eds
S

— 1
where e = - > o€,

With simple calculations
sdlog A — (3, cs(l —€y)dlog((1 —6,)A) + >, g €vdlog A)
> dzfues(l — €,) log 1—1&,

17/23

Compressing Accepted Connections I

To represent accepted requests from S we need

Z(l — €,)dlog((1 —9,)A) + Z €,dlog A

vES veES
1 —¢

< sdlog A — sdlog = + eds
S

— 1
where e = - > o€,

With simple calculations
sdlog A — (3, cs(l —€y)dlog((1 —6,)A) + >, g €vdlog A)
>d) ,es(l —e€)log 1—15@

Two cases: s < aA and aA < s < 3.

17/23

Compressing Accepted Connections II

Goal: bound d), (1 —€,)log 1_15
Case s < aA

Use A(1 —6,) <sand (£)? > 2
hence d), -¢(1 —€,)log 1_15,0 > —5-sdlog %

18/23

Compressing Accepted Connections II

Goal: bound)", (1 —¢€,)log ==

Case s < aA
Use A(1 —6,) < s and (%)2 > %
hence dzves(— €y) log 1_151J > —5-sdlog =

Case A <s< 5
Rewrite —(1 —¢€)sd) o &:—z")’s log ﬁ

use Jensen’s inequality to get (1 — ¢)sdlog }Zf;

18/23

Compressing Accepted Connections II

Goal: bound)", (1 —¢€,)log ==

Case s < aA
Use A(1—6,) < sand (£)? > =2

hence dzves(— €y) log 1_151J > —5-sdlog =

Case aA < s < 5

Rewrite —(1 —¢€)sd) o —(i?)’s log 5

use Jensen’s inequality to get (1 — €)sd log } :f;

To bound 1 — 0 we use the Expander Mixing Lemma:
(1-6)< 2+

18/23

Compressing Accepted Connections II

Goal: bound)", (1 —¢€,)log ==

Case s < aA
Use A(1 —6,) < s and (%)2 > %
hence dzves(— €y) log 1_151J > —5-sdlog =

Case aA < s < 5

Rewrite —(1 —¢€)sd) o —(i?)’s log 5

use Jensen’s inequality to get (1 — €)sd log } :f;

To bound 1 — 0 we use the Expander Mixing Lemma:
(1-6)< 2+

together with hypothesis on s and A, it implies

(1 —€)sdlog 1=5 > (1 — €)sdlog 2 — 2eds

18/23

Encoding:

Compressing the Non-Expanding Set

(7,

“C()n

Randomness of V — S

Nodes in Un,

V-5 ©S,
Set S: log|S| + log (%) i

Accepted connections: |
Nodes |

> ves 2logl, +log () in 5 |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (Evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:

> ves(l—€)dlog((1 —0,)A) +) g €vdlog A

connections to S connections to V' — .S (uncompressed)

Rejected requests

Unused randomness
(after node’s termination)

19/23

Compressing Rejected Requests (Idea)

With ¢, — d’ bits we encode which requests are rejected.

The hard part is compressing their destinations, for which
we use the following notions:

Semi-saturated nodes ss;: accepted connections until time
t — 1 + requests from V — S are > %

Critical nodes c;: not semi-saturated at time ¢ but accepted
+ rejected connections are > cd

20/23

Compressing Rejected Requests (Idea)

With ¢, — d’ bits we encode which requests are rejected.

The hard part is compressing their destinations, for which
we use the following notions:

Semi-saturated nodes ss;: accepted connections until time
t — 1 + requests from V — S are > %

Critical nodes c;: not semi-saturated at time ¢ but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes < % and critical nodes < %

20/23

Compressing Rejected Requests (Idea)

With ¢, — d’ bits we encode which requests are rejected.

The hard part is compressing their destinations, for which
we use the following notions:

Semi-saturated nodes ss;: accepted connections until time
t — 1 + requests from V — S are > %

Critical nodes c;: not semi-saturated at time ¢ but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes < % and critical nodes < %

We can then write
ss(v) log 22 + ZlT rcg(v) log ¢

Where rss(v) is the number of rejected connections from v
to semisaturated nodes and rc;(v) is the number of rejected
connections from v to critical nodes at time ¢

20/23

Compression Summary

Set S
Size Index of the set Pl
(@7
00
2log S| +1 " %,
0g| | + log |S| Nodes in \\;Of
VS &
&(Q N
7
Critical Nodes
Nodes in
Sizes Indices of sets S

—— Node v

Zil [10g ¢t + log (Z)]

9 bronze badges
Destinations of

accepted requests

ouside S (uncompressed) +

Subset of Subset of Destinations of

accepted requests accepted requests in S rejected requests

+ inside S (compressed)

2log £y + 1 (g) 2Nog(zod) +1 (d) cvdlog A+
ogl, +lo og(ey 0
& B\ d & &\ eud (1 —ey)dlog (1 — 8)A)

Semi-satured / Critical S.-sat. Crit. Crit. S.-sat. S.-sat. Crit.
dest. dest. dest. dest. dest. dest.
l, —d log(n/c) log ¢, logee, log(n/c) log(n/c) logee,

21/23

Open Problems

o (Generalizing to non-dense expanders.
E.g., not clear if all nodes can achieve
d connections if A = o(n)
(if A = O(logn), this happens w.h.p.)

22/23

Open Problems

o (Generalizing to non-dense expanders.
E.g., not clear if all nodes can achieve

d connections if A = o(n)
(if A = O(logn), this happens w.h.p.)

o Extending analysis to
non-regular graphs.

22/23

Open Problems

o (Generalizing to non-dense expanders.
E.g., not clear if all nodes can achieve

d connections if A = o(n)
(if A = O(logn), this happens w.h.p.)

o Extending analysis to
non-regular graphs.

o Investigate robustness of
RAES when nodes join
or leave the network.

22/23

Thank You!

	Computing through Dynamics: Principles for Distributed Coordination
	Outline
	Graph Expansion I
	Graph Expansion II
	Expander Mixing Lemma
	Motivations for this Work I
	Bonus Motivations
	Algorithm \textbf{R}equest - \textbf{A}ccept if \textbf{E}nough \textbf{S}pace
	Our Result
	Encoding Arguments
	Encoding Argument Example
	Encoding Arg. for Running Time (Warm Up)
	Encoding for Always-Rejected v
	Encoding Argument for Expansion
	Compressing the Non-Expanding Set
	Compressing Accepted Connections I
	Compressing Accepted Connections II
	Compressing the Non-Expanding Set
	Compressing Rejected Requests (Idea)
	Compression Summary
	Open Problems

