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Research Directions

• Computational Dynamics.
Achieving simplicity in
randomized distributed
algorithms.

=⇒

f( , , )

• Biological Distributed
Algorithms.
Going into biology and back,
through the algorithmic lens
(Natural Algorithms).
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Natural Algorithms

How does Physarum polycephalum
finds shortest paths? [Mehlhorn et al. 2012-...]
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Natural Algorithms

How ants perform
collective
navigattion? How
do they decide
where to relocate
their nest?

How does Physarum polycephalum
finds shortest paths? [Mehlhorn et al. 2012-...]
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Computational Dynamics

=⇒

f( , , )

Anonymous agents

Update
depends on
states of
random
subset of
agents

At each step:

• small set of
possible states

• simple update
function f
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Dynamics for Plurality Consensus

Plurality Consensus.
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Bias s• Each agent initially has a
value in {1, ..., k}.

• There is a small initial bias
(majority − 2nd-maj. color).

• Each agent eventually has the
most frequent initial value.
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Dynamics for Plurality Consensus

3-Majority Dynamics.
At each round, each agent samples 3 agents in the system and
adopts the majority color.

=⇒

Plurality Consensus.

Theorem.
3-Majority Dynamics converges
to plurality in O(k logn) rounds
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Clustering

Minimum Bisection Problem.
Find balanced bipartition |V1| = |V2| that minimizes cut.

V2V1

#edges minimized#edges minimized

[Garey et al. ’76]: Minimum bisection problem is NP-Complete!
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Stochastic Block Model (SBM)

qp p
• “Communities” V1, V2,

with |V1| = |V2|.
• include each edge with

probability
– p if edge inside V1 or V2,
– q if edge between V1 and V2.
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Stochastic Block Model (SBM)

qp p
• “Communities” V1, V2,

with |V1| = |V2|.
• include each edge with

probability
– p if edge inside V1 or V2,
– q if edge between V1 and V2.

“Reconstruction” problem.
Given graph generated by
SBM, find original clusters. ? ? ? ? ?
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Stochastic Block Model (SBM)

qp p
• “Communities” V1, V2,

with |V1| = |V2|.
• include each edge with

probability
– p if edge inside V1 or V2,
– q if edge between V1 and V2.

“Reconstruction” problem.
Given graph generated by
SBM, find original clusters.

Theorem. [Mossel et al. 2012-]
Clustering possible if and only
if p and q in a precise regime.

? ? ? ? ?
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Clustering with Averaging Dynamics

Regular Stochastic Block Model:

a-regular a-regular
b-regular bipartite
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Clustering with Averaging Dynamics

Regular Stochastic Block Model:

a-regular a-regular
b-regular bipartite

All nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1,−1}
• Then, at each round

set value x(t) to average
of neighbors

+ + + =4

?
?

? ?
?
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Why it Works: Intuition
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Why it Works: Intuition

?
?

?

? ?

?

?

???
? ? ? ?

?

?

? ? ?

?

? ?

?
?

?

?
?

? ?

? ?

?

?

???
? ? ? ?

?

?

? ? ?

?

? ?

?

?
?

?

−1

+1

· · ·α
Va

lu
e

Label:

• Set label to blue if x(t) < x(t−1), red otherwise
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Why It Works: Proof Idea

Theorem. In Regular Stochastic Block
Model with a− b >

√
2(a+ b),

Averaging Dynamics finds clusters after
logn

logλ2/λ3
steps with high probability.
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Why It Works: Proof Idea

P transition matrix of random walk on G and

Averaging is a
linear dynamics: x(t) = P · x(t−1) = P t · x(0)

Theorem. In Regular Stochastic Block
Model with a− b >

√
2(a+ b),

Averaging Dynamics finds clusters after
logn

logλ2/λ3
steps with high probability.

x(t) =

( )
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sign(x(t)(u)− x(t−1)(u)) = sign( )
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Example of Research on Collective Behavior

Cataglyphis niger needs to recruit nest mates to carry food.
Data suggest that they communicate by simple, stochastic noisy
interactions.
We provide mathematical evidence on why stochastic noisy
interactions imply small group size.

Recruitment in Desert Ants
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Noisy & Stochastic Interactions

Stochastic
Interactions.
At each round, each
agent receives a
message from another
random agent.
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Stochastic
Interactions.
At each round, each
agent receives a
message from another
random agent.

Noisy
Communication.
Before being received,
each bit is flipped with
probability 1/2− εn.

!
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random agent.
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Communication.
Before being received,
each bit is flipped with
probability 1/2− εn.
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Noisy vs Noiseless Broadcast and Consensus

(Valid) Consensus.
All nodes eventually
support the value
initially supported by
one of them.

Broadcast. All nodes
eventually receive the
message of the source.
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Reductions and Lower Bounds

Broadcast =⇒ Consensus
Noiseless Consensus
=⇒ Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are “equivalent”
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Reductions and Lower Bounds

Broadcast =⇒ Consensus

+ =⇒
Noisy Consensus:
Θ( logn

ε2 ) rounds

Noisy Broadcast:
Θ(n · logn

ε2 ) rounds

Noiseless Consensus
=⇒ Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are “equivalent”

Noisy Broadcast is exponentially harder
than Noisy Consensus
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Future Research Directions

• Computational Dynamics.
Achieving simplicity in
randomized distributed
algorithms.

=⇒

f( , , )

• Biological Distributed
Algorithms.
Going into biology and back,
through the algorithmic lens
(Natural Algorithms).
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Future Research Directions

• Computational Dynamics.
Achieving simplicity in
randomized distributed
algorithms.

=⇒

f( , , )

• Biological Distributed
Algorithms.
Going into biology and back,
through the algorithmic lens
(Natural Algorithms).

• Neuromorphic Computing.
Theory of neural networks
(algorithmic approach to
theoretical neuroscience).
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Thank You!
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