
1/31

Emanuele Natale

Computing with
Simple Dynamics

and Biological Applications

August 1st, 2018

Joint work with L. Becchetti, L. Boczkowki, V. Bonifaci,
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Part I

Computational Dynamics
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Natural Algorithms

How ants perform
collective
navigattion? How
do they decide
where to relocate
their nest?

How do flocks of birds
synchronize their flight?
[Chazelle ’09]

How does Physarum polycephalum
finds shortest paths? [Mehlhorn et al. 2012-...]
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How can Locally-Simple Systems Compute?
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A computational lens on how
global behavior emerges from

simple local interactions among individuals
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Computational Dynamics

=⇒

f( , , )

Anonymous agents

Update
depends on
states of
random
subset of
agents

At each step:

• small set of
possible states

• simple update
function f
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Dynamics for Plurality Consensus I

Plurality Consensus.
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• Each agent eventually has the
most frequent initial value.
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Dynamics for Plurality Consensus I

3-Majority Dynamics.
At each round, each agent samples 3 agents and adopts the
majority color.

=⇒

Plurality Consensus.

Theorem.
3-Majority Dynamics converges
to plurality in O(k logn) rounds
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Dynamics for Plurality Consensus II

=⇒ ?Undecided-State Dynamics.
Each agent u samples an agent v:

=⇒?

• If v has a different color, u
becomes undecided.

• If undecided, u copies the
color of v.
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Dynamics for Plurality Consensus II

=⇒ ?Undecided-State Dynamics.
Each agent u samples an agent v:

=⇒?

Theorem (Monochromatic Distance).
Undecided-State Dynamics converges to plurality within
Θ̃(md(initial configuration)) rounds with high probability.

• If v has a different color, u
becomes undecided.

• If undecided, u copies the
color of v.

1 ≤ md



�md



≤ k
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Clustering

Minimum Bisection Problem.
Find balanced bipartition |V1| = |V2| that minimizes cut.

V2V1

#edges minimized#edges minimized

[Garey et al. ’76]: Minimum bisection problem is NP-Complete!
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Stochastic Block Model (SBM)

qp p
• “Communities” V1, V2,

with |V1| = |V2|.
• include each edge with

probability
– p if edge inside V1 or V2,
– q if edge between V1 and V2.
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Stochastic Block Model (SBM)

qp p
• “Communities” V1, V2,

with |V1| = |V2|.
• include each edge with

probability
– p if edge inside V1 or V2,
– q if edge between V1 and V2.

“Reconstruction” problem.
Given graph generated by
SBM, find original clusters.

Theorem. [Mossel et al. 2012-]
Clustering possible if and only
if p and q in a precise regime.

? ? ? ? ?
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Clustering with Averaging Dynamics

Regular Stochastic Block Model:

a-regular a-regular
b-regular bipartite

All nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1,−1}
• Then, at each round

set value x(t) to average
of neighbors

+ + + =4

?
?

? ?
?
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Why it Works: Intuition
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• Set label to blue if x(t) < x(t−1), red otherwise
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Why It Works: Proof Idea

Theorem. In Regular Stochastic Block
Model with a− b >

√
2(a+ b),

Averaging Dynamics finds clusters after
logn

logλ2/λ3
steps with high probability.
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Why It Works: Proof Idea

P transition matrix of random walk on G and

Averaging is a
linear dynamics: x(t) = P · x(t−1) = P t · x(0)

Theorem. In Regular Stochastic Block
Model with a− b >

√
2(a+ b),

Averaging Dynamics finds clusters after
logn

logλ2/λ3
steps with high probability.

x(t) =

( )
negligible after
t� logn

logλ2/λ3
x(t) = 1

Θ̃(
√
n) +

(
a−b
a+b

)t
1

Θ̃(
√
n) + e(t)



1
...
1

−1
...

−1





1
...
1
1
...
1

 

1
...
1

−1
...

−1

sign(x(t)(u)− x(t−1)(u)) = sign( )
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Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or −1.
At each step, an edge {u, v} is chosen u.a.r. and u and v
average their values.



14/31

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or −1.
At each step, an edge {u, v} is chosen u.a.r. and u and v
average their values.



14/31

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or −1.
At each step, an edge {u, v} is chosen u.a.r. and u and v
average their values.



14/31

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or −1.
At each step, an edge {u, v} is chosen u.a.r. and u and v
average their values.



14/31

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or −1.
At each step, an edge {u, v} is chosen u.a.r. and u and v
average their values.

Theorem. In Regular Stochastic Block Model
• An AAD-based protocol finds clusters in
Cλ2−λ1n(ab + logn) with high probability.

• If λ2 � λ2
3

log2 n
, another AAD-based protocol finds clusters

after O( nλ3
log2 n) steps with high probability.
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Part II

Biological Distributed
Algorithms
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Recruitment in Desert Ants

Cataglyphis niger needs to recruit nest mates to carry food.
Data suggest that ants communicate by simple noisy interactions.
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Stochastic
Interactions.
At each round, each
agent receives a
message from another
random agent.
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Noisy & Stochastic Interactions

Stochastic
Interactions.
At each round, each
agent receives a
message from another
random agent.

Noisy
Communication.
Before being received,
each bit is flipped with
probability 1/2− εn.

!
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Noisy vs Noiseless Broadcast and Consensus

(Valid) Consensus.
All nodes eventually
support the value
initially supported by
one of them.

Broadcast. All nodes
eventually receive the
message of the source.
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Reductions and Lower Bounds

Broadcast =⇒ Consensus
Noiseless Consensus
=⇒ Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are “equivalent”
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Reductions and Lower Bounds

Broadcast =⇒ Consensus

+ =⇒
Noisy Consensus:
Θ( logn

ε2 ) rounds

Noisy Broadcast:
Θ(n · logn

ε2 ) rounds

Noiseless Consensus
=⇒ Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are “equivalent”

Noisy Broadcast is exponentially harder
than Noisy Consensus
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Part III

Theoretical Neuroscience



21/31

The Brain and Computation

Von Neumann, Turing, McCulloch, Pitts, Barlow... were
interested in the other field to better understand theirs.

Both fields have exploded in knowledge but have also grown
further apart.
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Computational Neuroscience: Data
1 mm3 of
mouse brain
=⇒ 300 TB
of image data
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• Far from experimentalists
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Computational Neuroscience: Theory

• Far from experimentalists
• Internally divided
• Led mostly by physicists

Issues:

Theories:
• Neural networks for learning: Pitts &

McCulloch (’47), Rosenblatt (’58), Hubel & Wiesel (’62), ...
• Neural-dynamics model for specific neural phenomena

(associative memory, grid cells, place cells, oscillations, ...)
• Works from Theoretical Computer Science: Neuroidal Model by

Valiant (’94), models of associative memory by Papadimitriou
et al, (’15), Lynch et al. (’16) and Navlakha et al. (’17), ...
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Does the Brain use Algorithms?

How are you
aware of your
location in
space?

2014 Nobel
Prize in
Physiology to
J. O’Keefe & M.
B. and E. Moser
for discovery of
cells that
constitute a
positioning
system in the
brain

Neuron 1 Neuron 2

Neuron 4Neuron 3

50 cm
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The Principle of Efficiency

Position (x, y)
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The Principle of Efficiency

Position (x, y) 8× 8 = 64
bits...

Position
(x = x1x2x3,
y = y1y2y3) y1

y2

y3

x1 x2 x3

+

6 + 6 = 12
bits
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Grid Cells Encodes Position Efficiently
Neuron 1 Neuron 2

Neuron 4Neuron 3

50 cm
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A model of content-addressable associative memory:
Hopfield networks [PNAS ’84]
(≈ 8000 citations)
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Hopfield networks [PNAS ’84]
(≈ 8000 citations)

Dynamics.
Pick a node v at random and set

sv ← sign(
∑
u suwu,v)

Each node v has initial state
sv ∈ {−1,+1}

until changes don’t occur anymore

1
1 1

1
+1 −1 −1
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A model of content-addressable associative memory:
Hopfield networks [PNAS ’84]
(≈ 8000 citations)

Dynamics.
Pick a node v at random and set

sv ← sign(
∑
u suwu,v)

Each node v has initial state
sv ∈ {−1,+1}

until changes don’t occur anymore

1
1 1

1
+1 −1 −1

−1

sign(1− 1− 1− 1) = −1
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A Model of Associative Memory

A model of content-addressable associative memory:
Hopfield networks [PNAS ’84]
(≈ 8000 citations) Convergence to binary

N -dimensional vectors
{v(i)}i

How to set weights wu,v?
Hebbian learning:
wi,j = 1

N

∑N
k v

(i)
k v

(j)
k

Dynamics.
Pick a node v at random and set

sv ← sign(
∑
u suwu,v)

Each node v has initial state
sv ∈ {−1,+1}

until changes don’t occur anymore

1
1 1

1
+1 −1 −1

−1

sign(1− 1− 1− 1) = −1
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How many vectors before errors appear?
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Capacity of Hopfield Networks

How many vectors before errors appear?

For random vectors, capacity is ≈
√
N

For structured patterns with other dynamics,
capacities are ≈ N, 2(

√
n), 2O

n
log n (but not robust)

Problem. Exponential capacity 2Ω(n) in Hopfield networks
with structured patters?
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From Expander Codes to Hopfield Networks

Expander Codes. [Sipser & Spielman ’96]

Variable nodes

Constraint nodes

Message
1 1 1 1 10000

Parity
constraints

Dynamics. Flip a variable with
#unsatisfied > satisfied neighbors

S set of < γN
variables has
≥ (1− ε)d|S|
neighbors

Thm. Dynamics
recovers 2Ω(n)

vectors, if < γ
2N

entries are flipped,
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From Expander Codes to Hopfield Networks

Expander Codes. [Sipser & Spielman ’96]

Variable nodes

Constraint nodes

Message
1 1 1 1 10000

Parity
constraints

Dynamics. Flip a variable with
#unsatisfied > satisfied neighbors

S set of < γN
variables has
≥ (1− ε)d|S|
neighbors

Thm. Dynamics
recovers 2Ω(n)

vectors, if < γ
2N

entries are flipped,
[Chauduri & Fiete ’18]
Exponential-Capacity Hopfield Network.
Constraint nodes → small Hopfield networks.
Dynamics → pick a random node and flip it to majority.
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Three Messages

• Computational Dynamics.
Achieving simplicity in randomized
distributed algorithms. =⇒

f( , , )

• Biological Distributed
Algorithms.
Investigating Biology through the
algorithmic lens
(Natural Algorithms).

• Theoretical Neuroscience.
Investigating Neuroscience through
the algorithmic lens.
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Thank You!
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