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Electrical Networks for Optimization

Computation of currents and voltages in
resistive electrical network is a crucial
primitive in many optimization algorithms
e Maximum flow

— Christiano, Kelner, Madry, Spielman and Teng,
STOC'11

— Lee, Rao and Srivastava, STOC'13
e Network sparsification

— Spielman and Srivastava, SIAM J. of Comp.
2011

e Generating spanning trees
— Kelner and Madry, FOCS'09
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and as model of biological computation

e Physarum implicitly solving electrical
polycephalum  flow while forming
e Ants food-transportation networks



he Slime Mold Physarum Polycephalum

Many nice videos on Youtube:

https://bit.ly/1T5cSSY
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Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007
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Physarum polycephalum builds tubes to transport food.
The amount of food flowing in the tube determines its growth
or deterioration.



he Slime Mold Physarum Polycephalum

Nakagaki, Yamada and Toth, Nature 2000
Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007

B

Physarum polycephalum builds tubes to transport food.
The amount of food flowing in the tube determines its growth
or deterioration.

YV

40

trt




he Slime Mold Physarum Polycephalum

Nakagaki, Yamada and Toth, Nature 2000
Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007

ot , ——— o N‘_

Physarum polycephalum builds tubes to transport food.
The amount of food flowing in the tube determines its growth
or deterioration.

YV

40

trt




he Slime Mold Physarum Polycephalum

For each edge e and node u
o /. length
e z. thickness
e (. food flow
e r. =/./x. resistance to flow



he Slime Mold Physarum Polycephalum

For each edge e and node u
o /. length
z. thickness
g. food flow
re =L,/ x. resistance to flow
there are demands b(u) such that
— 1 on source,
— -1 on sink,
— 0o/w
o flow conservation: »  _ qu..) = b(u)



he Slime Mold Physarum Polycephalum

For each edge e and node u
o /. length
z. thickness
g. food flow
re =L,/ x. resistance to flow
there are demands b(u) such that
— 1 on source,
— -1 on sink,
— 0o/w
o flow conservation: »  _ qu..) = b(u)

e there are pressures p(u) such that

Veycles uy, ..., up, Y. (p(wix1) —p(ui)) =0
e Flows relates to pressures by

Q(u,v) — (pu — pv)/re



he Slime Mold Physarum Polycephalum

For each edge e and node u
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re =L,/ x. resistance to flow
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he Slime Mold Physarum Polycephalum

For each edge e and node u

. length

z. thickness

g. food flow

Te = ge/ﬂfe resistance to flow Is the model good?
there are demands b(u) such that See Slime Mold

— 1 on source/ Graph Repository,
— -1 on sink, Dirnberger et al.
— 0o/w

flow conservation: ) . qu..) = b(u)

there are pressures p(u) such that

Veycles uy, ..., up, Y. (p(wix1) —p(ui)) =0
Flows relates to pressures by

d(u,w) = (pu - pv)/re
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Electrical Networks as Biological Models?...

hydraulic electric
volume V' [m?] charge ¢q [C]
pressure p [Pa=JIm3=NIm2] potential ¢ [V=J/C=W/A]
Volumetric flow rate @y [m?/s] current I [A=C/s]
velocity v [m/s] current density 7 [Cf{mz-sj = A/m?]
Poiseuille's law ¢y = ?;:;1 &;J* Ohm's law j = —oV¢

(stolen from Wikipedia/Hydraulic analogy)



From Slime Molds to Ants

electric network Physarum ant trails

length in space length in space length in space
potennaI/vo Itage ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L SR
wrent flow of nutrient flow of ants
e ty ......................................................... b phemmone [T,
= paqtance .......................................................... transp o efﬁqency ..................................... e phe B dens|ty ,
reinforement intensity tube expansion rate pheromone drop rate
conducnwtydecreaserate ................................... tubedecayrate .......................................... o porat|0nrate ...............

For each edge e and node u

e /. length e b(u) 1 on source, -1 on sink, 0 o/w

e 1. conductivity e Kirchhoff current law:

e (. current D von Q(u,v) = b(u)

o r.=/{./x, e Kirchhoff potential law: there are p(u)s
resistance o Ohm’s law: gy ) = (Pu — Pv)/7e




From Slime Molds to Ants

electric network Physarum ant trails

length in space length in space length in space

Ma, Johansson, Tero,

Nakagaki and Sumpter, ;
J. of the Royal Society B
Interface 13
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Physarum Dynamics as an Algorithm

Bonifaci, Mehlhorn and Varma SODA'12:
Physarum dynamics converges on all graphs

(elegant proof in Bonifaci IPL'13)



Physarum Dynamics as an Algorithm

Bonifaci, Mehlhorn and Varma SODA'12:

Physarum dynamics converges on all graphs
(elegant proof in Bonifaci IPL'13)

Euler's discretization

r(t 4 1) —x(t) = h(lq(t)| — (1))

Becchetti, Bonifaci, Dirnberger, Karrenbauer and
Mehlhorn ICALP'13:

Discretized physarum computes (1 + €)-apx.

in O(mL(logn +log L)/e>)




More Research on Physarum

Many sequels in TCS
- Bonifaci IPL'13,

- Straszak and Vishnoi
ITCS'16,

- Straszak and Vishnoi
SODA'16

- Becker et al. ESA'17



More Research on Physarum

Many sequels in TCS
- Bonifaci IPL'13,

- Straszak and Vishnoi
ITCS'16,

- Straszak and Vishnoi
SODA'16

- Becker et al. ESA'17

Some sequels elsewhere...
Tero et al. Science 2010:

Physarum re-builds
Tokyo's rail network!




More Research on Physarum

Look inside ¥
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Physarum Machines

Computers from Slime Mould

Andrew Adamatzky

World Scientific

See all 3images

Physarum Machines: Computers from Slime Mould (World Scientifi

Nonlinear Science, Series A) Hardcover — August 26, 2010
by Andrew Adamatzky ~ (Author)

Be the first to review this item

See all 2 formats and editions

Hardcover Paperback
$60.82 £104.00
30 Used from $62.10 5 Used from $99.66
34 Mew from $60.82 4 New from $99.66

A Physarum machine is a programmable amorphous biological computer experimentally implemented
in the vegetative state of true slime mould Physarum polycephalum. It comprises an amorphous
yellowish mass with networks of protoplasmic veins, programmed by spatial configurations of
attracting and repelling gradients.

This book demonstrates how to create experimental Physarum machines for computational geometry
and optimization, distributed manipulation and transportation, and general-purpose computation.
Being very cheap to make and easy to maintain, the machine also functions on a wide range of
substrates and in a broad scope of environmental conditions. As such a Physarum machine is a green
and environmentally friendly unconventional computer.

The book is readily accessible to a nonprofessional reader, and is a priceless source of experimental
tips and inventive theoretical ideas for anyone who is inspired by novel and emerging non-silicon
computers and robots.

~ Read less



How to Compute with Electrical Networks

Physarum have to solve Kirchhoff’'s equations
vau Q(u,v) — vau (pu — pv)/re — b(U)

edge’s weight z. /0.
.

D diagonal matrix of nodes’ volumes

A weighted incidence matrix
L=D-A



How to Compute with Electrical Networks

Physarum have to solve Kirchhoff’'s equations
vau Q(u,v) — vau (pu — pv)/re — b(u)

edge’s weight z. /0.
.

D diagonal matrix of nodes’ volumes

A weighted incidence matrix
L=D-A

Previous approaches: centralized computation

- Can be accomplished if every node is agent
that follows elementary protocol?
(biologically: what happens microscopically?)
- If yes, what is convergence time and
communication overhead?



Distributed Jacobi's Method

Jacobi’s iterative method (Varga, 2009):
Bound on convergence rate w.r.t. graph conductance

exploiting structure of laplacian
(cfr. also DeGroot’'s model)
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Distributed Jacobi's Method

Jacobi's iterative method (Varga, 2009):
Bound on convergence rate w.r.t. graph conductance

exploiting structure of laplacian
(cfr. also DeGroot’'s model)

Lp=(D—-Ap=b = p=D"'Ap+ Db

—

P Jacobi’'s matrix =
transition matrix

Jacobi's: p(t+1) = Pp(t) +b

Error e(t) =p —p(t) = e (t) + al
(p doesn'’t care about a: L1 = 0!)



Jacobi’'s Convergence
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p—ey (t +1)—

(A
(A

at+1)-1=p5(t+1)
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(p—er(t) —at)-1)+b)
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Jacobi’'s Convergence

The new error is

p—el (t+1)—at+1)-1=p(t+1)
= D 1 (Ap(t) +b)
=D 1 (A(p—el (t)—aft)-1)+b)
=p— Pe, (t)—a(t) -1,

thuse (t+1) = Pe  (t) — (a(t+1) — a(t))1

and e (t) = (I — +11T) Ple, (0).

10 -



Jacobi’'s Convergence

P=D"1Aissimilarto N = D~ 1/24D~1/2
Thus

Pt = (DAY = (D zNDz) =D :N'Dz.

Observe that
e N has n orthonormal eigenvec. x1,...,%,,
corresponding to eigenvectors 1, ...,y, of P
via Z; = D/2¢; for each 1.
e Both Z; and v;, for each 7, are associated to the
same eigenvalue p; of P.

10 -



Jacobi’'s Convergence

117) Ple (0)]]

1
_ %11T)D_%NtD%€L(O)H
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Jacobi’'s Convergence
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Jacobi’'s Convergence

17) Pe 1 (0)]

17) D NtDQeL(O)H

117) D2 (7, pldi&]) D2 e (0)
11T)|| HD—— ot | || D

leL(0)]
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Jacobi’'s Convergence

D™z (X1, pi#iT]) D2 ey (0)

IS0, Az || D

—aX 11 ax ‘,02‘7 ‘,O'n )t HeJ_(O)H )

Conductance by Cheeger's inequality

leL(0)]
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Randomized Token Diffusion Process

Doyle and Snell, '84 & Tetali, '91:

- global requirement
- no accuracy and msg. complexity bounds

- imagine & \\} |mag|ne ‘
a graph

source a graph

11 -



Randomized Token Diffusion Process

Doyle and Snell, '84 & Tetali, '91:

- global requirement
- no accuracy and msg. complexity bounds

- imagine & \\} |mag|ne ‘
a graph

source a graph

Our's:

- local requirement
- accuracy and msg. complexity w.r.t. edge expansion

11 -



Randomized Token Diffusion Process

Process

e At the beginning of each step, K new
tokens appear at the source

e Each token independently performs a
weighted random walk at each step

e Each token that hits the sink disappears

Estimator

(1)
Vf(f) = [ff\fol(az) where Zg)(u) number of tokens on

11 -



Expected Behavior

Define inductively p*) by

p&o) =0, for all u € V,
p(t+1) — <( VOll(u) (Z’UNU wu’Up?(Jt> —|_ bu) |f Uu # Sink,
’ U if u = sink.

_ ZR(w)

Lemma. If Vi) (u) = 25125 then B[V, (u)] = piy” |

12



Correctness of Token Diffusion

We can write

/N

with P and b obtained by zeroing out entries on row
and column of sink.
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Correctness of Token Diffusion

We can write

N\

with P and b obtained by zeroing out entries on row
and column of sink.

Lemma. The spectral radius of P, p, satisfies
p=1=>"1vi Pigni/|lvi|], where ¥ is left Perron

eigenvector of P.

Theorem. System above converges to a valid
potential with rate p.

13 -



ime and Message Complexity

Theorem. 1 —p > 2volm;\j(n_1) 3 —Win

where )5 is 2nd smallest eigenvalue of non-normalized
laplacian of graph with sink removed.

Connecting with edge expansion:

it is known \

A2(G) > volmax — (VoI —6(G)%)1/2,

Imax
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ime and Message Complexity

Theorem. 1 —p > 2volm;\j(n_1) 3 Win_

where )5 is 2nd smallest eigenvalue of non-normalized
laplacian of graph with sink removed.

Connecting with edge expansion:

it is known \

A2(G) > volmax — (VolZ,. — 6(G)%)1/2.

Imax

Remark. As t — oo, the expected message complexity
per round of Token Diffusion Algorithm is

O(K nvolyay - E), where E = pTLp' is the energy of
the electrical flow.

14 -



Stochastic Accuracy

X gives (€, 0)-approximation of Y if
P((X—-Y|>¢€Y) <0

Lemma. For any K, 0 <e€,0 <1, t and u, such that

pq(f) > EgKfol(u) In 2, the estimator provides an
(t)

(€, 0)-approximation of py,”.
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Stochastic Accuracy

X gives (€, 0)-approximation of Y if
P((X—-Y|>¢€Y) <0

Lemma. For any Ii{, 0 <e€,0 <1, tand u, such that

(t) > EQK STCD ln . the estimator provides an
(t)

(€, 0)-approximation of py,”.

Vice versa. (e€,0)-approximation of the potentials p( )

greater than p( ) is achleved by setting
K > ()3 In 2 s

e?p, ' vol(u)

Proof. Chernoff bound requires Y > 1/¢°.

15 -



Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

compute compute
. update . update
—» electrical — —» eclectrical — —>
edges edges
flow flow

Lp — b 3'36:‘6]6‘—566 L/p — b 3'36:‘%‘_556

16 -
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

This work

compute
electrical

compute
electrical
flow

update
edges

update
edges

flow

ie:‘Qe‘_Zve L/p =0 ie:‘Qe‘_ZUe

e Spectral structure of L7

e Global convergence time?
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