Computing through Simplicity: Towards a Theory of Dynamics

Emanuele Natale*

Assemblée Générale I3S, Sophia Antipolis 20 Decembre 2018

My Algorithmic Biography

• 2016 - PhD at Sapienza University, in Theory of Distributed Computing

My Algorithmic Biography

• 2016 - PhD at Sapienza University, in Theory of Distributed Computing

2016-now - PostDoc at
 Max Planck Institute for Informatics
 D1 - Algorithms & Complexity

My Algorithmic Biography

• 2016 - PhD at Sapienza University, in Theory of Distributed Computing

2016-now - PostDoc at
 Max Planck Institute for Informatics
 D1 - Algorithms & Complexity

• 2016 & 2018 - Fellow of Simons Institute for the Theory of Computing

Part I

Computational Dynamics

Natural Algorithms

How do flocks of birds synchronize their flight?
[Chazelle '09]

Natural Algorithms

How do flocks of birds synchronize their flight? [Chazelle '09]

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

Natural Algorithms

How do flocks of birds synchronize their flight? [Chazelle '09]

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

How ants perform collective navigattion? How do they decide where to relocate their nest?

How can *Locally-Simple* Systems *Compute*?

How can *Locally-Simple* Systems *Compute*?

A computational lens on how global behavior emerges from simple local interactions among individuals

Computational **Dynamics**

Anonymous agents

- small set of possible states
- simple update function f

At each step:

Update depends on states of random subset of agents

Dynamics for Plurality Consensus I

Plurality Consensus.

- Each agent initially has a value in $\{1, ..., k\}$.
- $\Omega(\sqrt{kn \log n})$ initial **bias** (majority 2nd-majority color).
- Each agent eventually has the most frequent initial value.

Dynamics for Plurality Consensus I

Plurality Consensus.

- Each agent initially has a value in $\{1, ..., k\}$.
- $\Omega(\sqrt{kn \log n})$ initial **bias** (majority 2nd-majority color).
- Each agent eventually has the most frequent initial value.

3-Majority Dynamics.

At each round, each agent samples 3 agents and adopts the majority color.

Theorem.

3-Majority Dynamics converges to plurality in $\mathcal{O}(k \log n)$ rounds

Dynamics for Plurality Consensus II

Undecided-State Dynamics.

Each agent u samples an agent v:

- If v has a different color, u becomes undecided.
- If undecided, u copies the color of v.

Dynamics for Plurality Consensus II

Undecided-State Dynamics.

Each agent u samples an agent v:

- If v has a different color, u becomes undecided.
- If undecided, u copies the color of v.

Theorem (Monochromatic Distance).

Undecided-State Dynamics converges to plurality within $\tilde{\Theta}(\text{md(initial configuration}))$ rounds with high probability.

Clustering

Minimum Bisection Problem.

Find balanced bipartition $|V_1| = |V_2|$ that minimizes cut.

[Garey et al. '76]: Minimum bisection problem is NP-Complete!

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - q if edge between V_1 and V_2 .

"Reconstruction" problem.

Given graph generated by SBM, find original clusters.

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - q if edge between V_1 and V_2 .

"Reconstruction" problem.

Given graph generated by SBM, find original clusters.

Theorem. [Mossel et al. 2012-] Clustering possible **if and only if** p and q in a precise regime.

Clustering with **Averaging Dynamics**

Regular Stochastic Block Model:

Clustering with Averaging Dynamics

Regular Stochastic Block Model:

All nodes at the same time:

- At t = 0, randomly pick value $x^{(t)} \in \{+1, -1\}$
- Then, at each round set value $x^{(t)}$ to average of neighbors

Why it Works: Intuition

Why it Works: Intuition

Why it Works: Intuition

• Set label to blue if $x^{(t)} < x^{(t-1)}$, red otherwise

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a - b > \sqrt{2(a + b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a - b > \sqrt{2(a+b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Averaging is a

$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

Averaging is a linear dynamics: $\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$ P transition matrix of random walk on G and $\mathbf{x}^{(t)} = \mathbf{x}^{(t)}$

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b > \sqrt{2(a+b)}$,

Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Averaging is a

$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

Averaging is a linear dynamics:
$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

$$P \text{ transition matrix of random walk on } G \text{ and } \mathbf{x}^{(t)} = \emptyset$$

$$\mathbf{x}^{(t)} = \frac{1}{\tilde{\Theta}(\sqrt{n})} \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{a-b}{a+b} \end{pmatrix}^t \frac{1}{\tilde{\Theta}(\sqrt{n})} \begin{pmatrix} 1 \\ \vdots \\ 1 \\ -1 \\ \vdots \\ -1 \end{pmatrix} + \mathbf{e}^{(t)} \bullet \text{negligible after } t \gg \frac{\log n}{\log \lambda_2/\lambda_3}$$

$$\mathbf{sign}(\mathbf{x}^{(t)}(u) - \mathbf{x}^{(t-1)}(u)) = \mathbf{sign}\begin{pmatrix} 1 \\ \vdots \\ 1 \\ -1 \\ \vdots \\ -1 \end{pmatrix}$$

Asynchronous Averaging Dynamics (AAD):

Each node u initially flips a coin and gets value +1 or -1. At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics (AAD):

Each node u initially flips a coin and gets value +1 or -1. At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics (AAD):

Each node u initially flips a coin and gets value +1 or -1. At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics (AAD):

Each node u initially flips a coin and gets value +1 or -1. At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics (AAD):

Each node u initially flips a coin and gets value +1 or -1. At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Theorem. In Regular Stochastic Block Model

- An AAD-based protocol finds clusters in $C_{\lambda_2-\lambda_1}n(\frac{a}{b}+\log n)$ with high probability.
- If $\lambda_2 \ll \frac{\lambda_3^2}{\log^2 n}$, another AAD-based protocol finds clusters after $\mathcal{O}(\frac{n}{\lambda_3}\log^2 n)$ steps with high probability.

Part II

Biological Distributed Algorithms

Recruitment in Desert Ants

Cataglyphis niger needs to recruit nest mates to carry food. Data suggest that they communicate by simple, stochastic noisy interactions.

We provide **mathematical evidence** on why stochastic noisy interactions imply *small group size*.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Noisy vs Noiseless Broadcast and Consensus

Broadcast. All nodes eventually receive the message of the source.

(Valid) Consensus.

All nodes eventually support the value initially supported by one of them.

Reductions and Lower Bounds

Broadcast \Longrightarrow Consensus

Noiseless Consensus

⇒ Noiseless

(variant of) Broadcast

Noiseless Consensus and Broadcast are "equivalent"

Reductions and Lower Bounds

Broadcast \Longrightarrow Consensus

Noiseless Consensus

→ Noiseless

(variant of) Broadcast

Noiseless Consensus and Broadcast are "equivalent"

Noisy Broadcast is exponentially harder than Noisy Consensus

Directions

• Computational Dynamics.

Achieving simplicity in randomized distributed algorithms.

• Biological Distributed Algorithms.

Going into biology and back, through the algorithmic lens (Natural Algorithms).

Thank You!

Come talk to me!