
1/8

Emanuele Natale

Consensus needs Broadcast
in Noiseless Models

but can be Exponentially Easier
in the Presence of Noise

August 15th, 2018

Joint work with A. Clementi, L. Gualà, F. Pasquale,
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Natural Algorithms

How ants perform
collective
navigattion? How
do they decide
where to relocate
their nest?

How do flocks of birds
synchronize their flight?
[Chazelle ’09]

How does Physarum polycephalum
finds shortest paths? [Mehlhorn et al. 2012-...]
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Noisy vs Noiseless Broadcast and Consensus

(Valid) δ-Consensus.
All agents but a
fraction δ, eventually
support the value
initially supported by
one of them.

Broadcast. All agents
eventually receive the
message of the source.
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Noisy & Stochastic Interactions

Stochastic
Interactions.
At each round, each
agent receives a
message from another
random agent.
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Lower Bounds and Reductions

+ =⇒
Noisy Consensus:
Θ( logn

ε2 ) rounds

Noisy Broadcast:
Θ(n · logn

ε2 ) rounds

Noisy Broadcast is exponentially harder
than Noisy Consensus
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Lower Bounds and Reductions

Broadcast =⇒ Consensus

+ =⇒
Noisy Consensus:
Θ( logn

ε2 ) rounds

Noisy Broadcast:
Θ(n · logn

ε2 ) rounds

Noiseless Consensus
=⇒ Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are “equivalent”

Noisy Broadcast is exponentially harder
than Noisy Consensus
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Consensus =⇒ “Broadcast”

Def. Given agent s, we call an agent infected if it is s or it
receives any message from an infected agent. Protocol P is
δ-infective w.r.t. s if infects all but a fraction δ of agents.
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Def. Given agent s, we call an agent infected if it is s or it
receives any message from an infected agent. Protocol P is
δ-infective w.r.t. s if infects all but a fraction δ of agents.

Thm. Let P be a δ-consensus protocol with probability
1− o(1/n). There is an agent s and initial inputs to agents
such that P is (1− 2δ)-infective with probability ≥ 1/(2n).

Corollary. Let T be a resource of the
distributed system S. If no protocol can infect
more than (1− 2δ) fraction of agents with high
probability, w.r.t. any source, without
exceeding tb units of T , then any δ-consensus
protocol with high probability must exceeed tb.
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Proof in 9 Steps
1. Label nodes v1, ..., vn. xk is initial

configuration with v1, ..., vk having
input 0, while others have input 1.

xk = (0, ..., 0︸ ︷︷ ︸
k

, 1..., 1)
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