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Electrical Networks for Optimization

Computation of currents and voltages in resistive
electrical network is a crucial primitive in many
optimization algorithms

e Maximum flow
— Christiano, Kelner, Madry, Spielman and Teng, STOC'11
— Lee, Rao and Srivastava, STOC'13
e Network sparsification
— Spielman and Srivastava, SIAM J. of Comp. 2011
e Generating spanning trees
— Kelner and Madry, FOCS'09
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optimization algorithms

e Maximum flow
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— Lee, Rao and Srivastava, STOC'13

e Network sparsification
— Spielman and Srivastava, SIAM J. of Comp. 2011

e Generating spanning trees
— Kelner and Madry, FOCS'09

and as model of biological computation

e Physarum implicitly solving electrical flow
polycephalum while forming food-transportation
e Ants networks
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Physarum Polycephalum Behavior

e Nakagaki, Yamada and Toth, Nature 2000
e Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007
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Physarum polycephalum builds tubes to transport food.
Amount of food flowing in tube determines growth or deterioration.
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Physarum Polycephalum Dynamics

For each edge e and node u

(. length

x. thickness (conductivity)
q. food flow (current)

re = {./x. resistance to flow

Flows relates to pressures by
Q(u,v) — (pu — Z%)/Te
(Ohm'’s law)

there are pressures p(u):
Veycle uq, ..., uy,
>_i(p(uit1) — p(ui)) =0

(Kirchhoff potential law)

Dynamics: &, = |q.| — xe

e flow conservation:
ZUNU d(u,v) = b(U)
(Kirchhoff current law)

e there are demands b(u):
— 1 on source,

— -1 on sink,

— 0o/w
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Physarum dynamics converges on all graphs

(elegant proof in Bonifaci IPL'13)
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ICALP'13:

Discretized physarum computes (1 + ¢)-apx.

in O(mL(logn +log L)/e>)



Physarum Dynamics as an Algorithm

Bonifaci, Mehlhorn and Varma SODA'12:
Physarum dynamics converges on all graphs

(elegant proof in Bonifaci IPL'13)

Euler's discretization

v(t+1) —z(t) = h(lq(t)| — x(1))

Becchetti, Bonifaci, Dirnberger, Karrenbauer and Mehlhorn
ICALP'13:

Discretized physarum computes (1 + ¢)-apx.

in O(mL(logn +log L)/e>)

Many sequels in TCS:
Bonifaci IPL'13, Straszak and Vishnoi ITCS'16, Straszak and
Vishnoi SODA'16, Becker et al. ESA'17, ...



How to Compute with Electrical Networks

Physarum have to solve Kirchhoff's equations
quwu q(u,’U) — vau(pu o p’l))/re — b(u’)

.« 7]

edge’s weight x.//,
D diagonal matrix of nodes’ volumes

A weighted adjacency matrix
L=D-A



How to Compute with Electrical Networks

Physarum have to solve Kirchhoff's equations
quwu q(u,’U) — vau(pu o p’l))/re — b(u’)

e edge’s weight x.//,
B e D diagonal matrix of nodes’ volumes
or |Lp=5 . . .
e A weighted adjacency matrix
e L=D-A

Previous approaches: centralized computation

- Can be accomplished if every node is agent that follows
elementary protocol?

(biologically: what happens microscopically?)

- If yes, what is convergence time and communication
overhead?
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Jacobi’s iterative method (Varga, 2009):

Bound on convergence rate w.r.t. graph conductance
exploiting structure of laplacian
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Distributed Jacobi's Method

Jacobi’s iterative method (Varga, 2009):

Bound on convergence rate w.r.t. graph conductance
exploiting structure of laplacian

Lp=(D—-Ap=b = p=D"'Ap+ Db

P Jacobi’'s matrix =
transition matrix

Jacobi's: p(t+ 1) = Pp(t) +b

Error e(t) =p —p(t) = e (t) + al
(p doesn’t care about a: L1 = 0!)
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Analysis of Deterministic Process

The new erroris e (t+1) = Pe (t) — (a(t+1) —a(t))1
thus e (t) = (I — =117) P'e (0).

P=D1Aissimilarto N = D-1/2ApD~1/2
Thus
Pt = (D 'A)Y =(D"*NDz)' = D" N'Dz.

Observe that
e N has n orthonormal eigenvec. 71,...,Z,, corresponding
to eigenvectors i, ..., U, of P via &; = D/2¢; for each i.
e Both Z; and ;, for each 7, are associated to the same
eigenvalue p; of P.

lex ()] <4/ Vo max(|pzl, [pn])" L (0)]

VOlmin \

Conductance by Cheeger's inequality
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Doyle and Snell, '84 & Tetali, '91:

- global requirement
- no accuracy and msg. complexity bounds

raph ----
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Randomized

oken Diffusion Process

Doyle and Snell, '84 & Tetali, '91:

- global requirement

- no accuracy and msg. complexity bounds

Our's:

- local requirement

- accuracy and msg. complexity w.r.t. edge expansion



Randomized Token Diffusion Process

Process
e At the beginning of each step, K new tokens appear

at the source

e Each token independently performs a weighted
random walk at each step

e Each token that hits the sink disappears

Estimator
(t)
V}? = I?{fol(gg) where Z}? (u) number of tokens on u



Randomized Token Diffusion Process

Process
e At the beginning of each step, K new tokens appear
at the source
e Each token independently performs a weighted
random walk at each step

e Each token that hits the sink disappears

Estimator

(t)
V}? = I?{fol(gg) where Z}? (u) number of tokens on u

with P and b obtained by zeroing out entries on row and
column of sink.



Analysis of Random Process

Lemma. The spectral radius of P, P, satisfies p =
1 =" v+ Pigink/||v1]l, where ¥ is left Perron eigenvector of P.

Theorem. System above converges to a valid potential with rate p.
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Theorem. System above converges to a valid potential with rate p.

win_
B L wintA2
where A5 is 2nd smallest eigenvalue of non-normalized laplacian
of graph with sink removed.

Theorem. 1 — p = 2volmax(n 1) 2

Connecting with edge expansion:
it is known

A2(G) > volgmax — (VOl2. — 0(G)?)/2.
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Analysis of Random Process

Lemma. The spectral radius of P, p, satisfies p=

1 =" v+ Pigink/||v1]], where ¥ is left Perron eigenvector of P.

Theorem. System above converges to a valid potential with rate p.

w’L'rL
. U wzn‘|—>\2
where A5 is 2nd smallest eigenvalue of non-normalized laplacian

of graph with sink removed.

Theorem. 1 — P = > 2volmax(n 1) Z

Connecting with edge expansion:
it is known

A2(G) > Volmax — (vl — 0(G)?)/2.

Remark. As t — 00, the expected message complexity per
round of Token Diffusion Algorithm is O(K nvoly.x - F), where
E = pTLp is the energy of the electrical flow.

10 -
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Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

compute Jodate compute odate
P clectrical > P P clectrical > P — >
edges edges
flow flow

Lp=0b Ze=|g|—ze L'p=0 Zc=|ge|—ze
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

This work

compute compute
electrical electrical

update
edges

flow flow

Te = || —®e L'p=0b Zc=|qe|— e

e Spectral structure of L7

e Global convergence time?



Thank Youl



Stochastic Accuracy

X gives (€, 6)-approximation of Y if P (| X — Y| > €Y) < 6.

Lemma. For any K, 0 <¢€,0 <1, t and u, such that

p&t) > egKfol(u) In %, the estimator provides an
(t)

(€, 9)-approximation of py,”.

Vice versa. (e, d)-approximation of the potentials pg,,t) greater

than pit) is achieved by setting K > — (t)3 In %.

e?p, ’vol(u)

1
Slng
2

Proofs. Chernoff bound requires ¥ > —
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he Slime Mold Physarum Polycephalum

electric network Physarum ant trails

length in space length in space length in space

Ma, Johansson, Tero, Nakagaki

(b)

and Sumpter, J. of the Royal
Society Interface '13
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