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Dynamics

Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.

(in
fo

rm
al

)



Dynamics

Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.

(in
fo

rm
al

)

Examples of Dynamics

• 3-Median dynamics =⇒ < <



Dynamics

Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.

(in
fo

rm
al

)

Examples of Dynamics

• 3-Median dynamics
• 3-Majority dynamics

=⇒



Dynamics

Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.

(in
fo

rm
al

)

Examples of Dynamics

• 3-Median dynamics
• 3-Majority dynamics
• Undecided-state dynamics

=⇒

??



Dynamics

Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.
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Examples of Dynamics

• 3-Median dynamics
• 3-Majority dynamics
• Undecided-state dynamics
• Averaging dynamics

=⇒

??



The Power of Dynamics: Plurality Consensus

• 3-Median dynamics [Doerr et al. ’11]. Converge to
O(
√
n logn) approximation of median of system in

O(logn) rounds w.h.p., even if O(
√
n) states are

arbitrarily changed at each round (O(
√
n)-bounded

adversary).

• 3-Majority dynamics [SPAA ’14, SODA ’16]. If
plurality has bias O(

√
kn logn), converges to it in

O(k logn) rounds w.h.p., even against
o(
√
n/k)-bounded adversary. Without bias, converges

in poly(k). h-majority converges in Ω(k/h2).
• Undecided-State dynamics [SODA ’15]. If

majority/second-majority (cmaj/c2ndmaj) is at least
1 + ε, system converges to plurality within
Θ̃(
∑k
i=1

(
c
(0)
i /c

(0)
maj

)2
) rounds w.h.p.

Computing the Median

Computing the Majority

=⇒
<
<

=⇒

=⇒

?



The Median, the Mode and... the Mean

Dynamics can solve Consensus, Median, Majority,
in robust and fault tolerant ways, but this is trivial
in centralized setting.



The Median, the Mode and... the Mean

Dynamics can solve Consensus, Median, Majority,
in robust and fault tolerant ways, but this is trivial
in centralized setting.

Can dynamics solve a problem non-trivial in
centralized setting?



Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with 2n nodes.
Output: S = arg min

S⊂V
|S|=n

E(S, V − S).

[Garey, Johnson, Stockmeyer ’76]:
Min-Bisection is NP-Complete.



The Stochastic Block Model

Stochastic Block Model (SBM). Two
“communities” of equal size V1 and V2, each edge
inside a community included with probability
p = a

n , each edge across communities included with
probability q = b

n < p.

q
p p



The Stochastic Block Model

Reconstruction problem. Given graph generated
by SBM, find original partition.

qp p∼
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The Averaging Dynamics in the LOCAL Model

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set value x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.
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Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set value x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

Well studied process [Shah ’09]:
• Converges to (weighted) global

average of initial values,
• Convergence time = mixing

time of G,
• Important applications in

fault-tolerant self-stabilizing
consensus.

P transition matrix
of random walk

Averaging
is a linear
dynamics

x(t) =
x(t) = P · x(t−1) = P t · x(0)

( )
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Who are my
friends?

Local view of a node:

Node’s
value

Local view of a node:

Irregular case:
• outliers?
• no neighbors in the other community?
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v1, ..., vn eigenvectors of
random walk matrix P :
v1 = 1 = (1, ..., 1)
v2 ≈ χ = (1, ..., 1,−1, ...,−1)

“nice”
graph



Community Detection via Averaging Dynamics

[SODA ’17](Informal). G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of
eigenvalue λ2 of transition matrix of G, and
ii) gap between λ2 and λ = max{λ3, |λn|}
sufficiently large,
then Averaging (approximately) identifies (V1, V2).



Toy Case: Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al.
SODA’16]. A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G
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V1
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V2
∼ random a-regular graphs
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E(V1,V2) ∼ random b-regular bipartite graph.
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P

x(t) = P t · x(0) =
∑
i λ

t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,vn and real
eigenvalues λ1, ..., λn.

v1 = 1√
n
1 with (largest) eigenvalue 1

Regular SBM =⇒ P 1√
n
χ = (a−ba+b ) ·

1√
n
χ


· · · · · · · · · · · · · · · · · ·
· · · a “1”s · · · · · · b “1”s · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · b “1”s · · · · · · a “1”s · · ·
· · · · · · · · · · · · · · · · · ·

 ·


1
...
1
−1
...
−1


=



1
...
1
−1
...
−1


1
a+b

a−b
a+b



Analysis on Regular SBM

P

x(t) = P t · x(0) =
∑
i λ

t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,vn and real
eigenvalues λ1, ..., λn.

v1 = 1√
n
1 with (largest) eigenvalue 1

Regular SBM =⇒ P 1√
n
χ = (a−ba+b ) ·

1√
n
χ

W.h.p. max{λ3, |λn|}(1 + δ) < a−b
a+b = λ2, then

x(t) = 1
n

(1ᵀx(0))1 +
(a− b
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)t 1
n

(χᵀx(0))χ+ e(t)
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√
n



Analysis on Regular SBM

W.h.p. max{λ3, |λn|}(1 + δ) < a−b
a+b = λ2, then

x(t) = 1
n
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)t 1
n
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√
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1
n

∑
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1
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Analysis on Regular SBM

x(t) = 1
n

(1ᵀx(0))1 +
( a− b
a+ b︸ ︷︷ ︸
=λ2

)t 1
n

(χᵀx(0))χ+ e(t)
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Analysis on Regular SBM

x(t) = 1
n

(1ᵀx(0))1 +
( a− b
a+ b︸ ︷︷ ︸
=λ2

)t 1
n

(χᵀx(0))χ+ e(t)

x(t) − x(t−1) = (χᵀx(0))λt−1
2 (λ2 − 1)χ + e(t) − e(t−1)︸ ︷︷ ︸

o(λt2) if t=Ω(logn)

sign(x(t)(u)− x(t−1)(u)) ∝ sign(χ(u))
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Sparsification of the Averaging Dynamics

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(

Can we sparsify the process?
=⇒ Do averaging only over some random edges.

x(t) = P (t) · x(t−1) = P (t) · · · · · P (1) · x(0)

Random matrices!

Expected behavior:
E
[
x(t) |x(0)] = E [P ] ·E

[
x(t−1) |x(0)] = (E [P ])t · x(0)

Problem: no concentration tools for matrix products
(e.g. no logarithm for noncommutative matrices)
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Communication Model: Population Protocol

Population protocol: at each round a random edge
is chosen and the two corresponding agent interact.

!!!: The variance of picking a random
edge breaks the monotonicity and
seems to prevent concentration.



Community Sensitive Labeling

CSL(m,T ):
• At the outset x(0)

u ∼ Unif({−1,+1}m).

• In each round, the endpoints of the random edge choose a
random index j ∈ [m] and set

xu(j) = xv(j) = xu(j) + xv(j)
2 ;

• At the T -th update of j-th component,
u sets hu(j) = sgn(xu(j)).

(cfr [Boyd et al. ’06]).
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CSL(m,T ):
• At the outset x(0)

u ∼ Unif({−1,+1}m).

• In each round, the endpoints of the random edge choose a
random index j ∈ [m] and set

xu(j) = xv(j) = xu(j) + xv(j)
2 ;

• At the T -th update of j-th component,
u sets hu(j) = sgn(xu(j)).

(cfr [Boyd et al. ’06]).

Thm. G = (V1
⋃̇
V2, E) regular SBM s.t. dε4 � b log2 n, then

CSL(m,T ) with m = Θ(ε−1 logn) and T = Θ(logn) labels all
nodes but a set U with size |U | ≤

√
εn, in such a way that

• the labels of nodes in the same community agree on at
least 5/6 entries, and

• the labels of nodes in different communities differ in more
than 1/6 entries.



Community Sensitive Labeling

Warning: not a dynamics!
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Example:

> 2 different labels
=⇒ foes!

≤ 2 different labels
=⇒ friends!
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component j, all lucky nodes u 6∈ U are such that

Pr
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Proof Ingredient 1. We are done if, for any fixed
component j, all lucky nodes u 6∈ U are such that

Pr
(
hu = sgn

( ∑
v∈V (u)

xv
))
≥ 99

100 .

x(0)
u ∼ Unif({−1,+1}).

Pr(
∑
v∈V1

x(0)
v > 0 >

∑
v∈V2

x(0)
v ) ≈ 1

2

(Obs. Pr(|
∑
v∈Vi x(0)

v | < nε)� nε√
n

)

︸ ︷︷ ︸

Problem: bound |U | = #unlucky nodes
(i.e. sgn(x(T )

u ) is wrong with prob. > 1/100).

sign of xu
at (local)
time T



Analysis 2/4

Proof Ingredient 2. hu is a random variable!
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Proof Ingredient 2. hu is a random variable!
Proof Idea 2. =⇒ Synchronicity issue, cannot union bound...

=⇒ if for any t = Θ(n logn) we prove
≈ ε2n nodes u are bad, namely

(x(t)
u −

∑
v∈V (u)

x(0)
v )2 >

ε2

n

then we can bound the unlucky nodes by bounding a
spreading process:
• At time 10n logn, ≈ ε2n nodes are bad/unlucky, and
• at each following round, a good node become bad iff we

pick a cross edge or an edge touching a bad node.

W.h.p. T happens in (global) time Θ(n logn).
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Proof Ingredient 2. hu is a random variable!
Proof Idea 2. =⇒ Synchronicity issue, cannot union bound...

=⇒ if for any t = Θ(n logn) we prove
≈ ε2n nodes u are bad, namely

(x(t)
u −

∑
v∈V (u)

x(0)
v )2 >

ε2

n

then we can bound the unlucky nodes by bounding a
spreading process:
• At time 10n logn, ≈ ε2n nodes are bad/unlucky, and
• at each following round, a good node become bad iff we

pick a cross edge or an edge touching a bad node.

W.h.p. T happens in (global) time Θ(n logn).
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Analysis (3-)4/4: Second Moment Analysis

Proof Ingredient 3. If
∑
u(x(10n logn)

u −
∑
v∈V (u) x(0)

v )2 is
small (Ingredient 4), it remains small for O(n logn) rounds.
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Proof Ingredient 3. If
∑
u(x(10n logn)

u −
∑
v∈V (u) x(0)

v )2 is
small (Ingredient 4), it remains small for O(n logn) rounds.

(Essentially triangle and Markov ineq.s on Ingredient 4.)

Proof Ingredient 4. Use Markov ineq. on

E
[∑
u

(x(t)
u −

∑
v∈V (u)

x(0)
v )2

]
= E

[
‖x(t) − πv1,2(x(0))‖2

]
= E

[
‖πv≥2(x(t)

u )− πv2(x(0)
u )‖2

]
≤ E

[
‖
∏

P (i)πv2(x(t)
u )− πv2(x(0)

u )‖2
]

+ E
[
‖
∏

P (i)πv≥3(x(0)
u )‖2

]
.

P (i) matrix of
averaging at time i

πvi(x) projection
on i-th eigenspace
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small (Ingredient 4), it remains small for O(n logn) rounds.

(Essentially triangle and Markov ineq.s on Ingredient 4.)

Proof Ingredient 4. Use Markov ineq. on

E
[∑
u

(x(t)
u −

∑
v∈V (u)

x(0)
v )2

]
= E

[
‖x(t) − πv1,2(x(0))‖2

]
= E

[
‖πv≥2(x(t)

u )− πv2(x(0)
u )‖2

]
≤ E

[
‖
∏

P (i)πv2(x(t)
u )− πv2(x(0)

u )‖2
]

+ E
[
‖
∏

P (i)πv≥3(x(0)
u )‖2

]
.

P (i) matrix of
averaging at time i

πvi(x) projection
on i-th eigenspace

Not hard to bound

Need double recurrence



Thank you!
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