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Examples of “Natural” Algorithms

How birds of flocks synchronize
their flight [Chazelle "09]

How are sensory
organ precursor
cells selected in a

fly’s nervous system |
[AABHBB ’11]

How do ants

How Physarum polycephalum decide where
finds shortest paths [BBDKM ’14]  to relocate
their nest?

[ GMRL ’15]

.. How ants perform collective
A | navigattion [FHBGKKF ’16]
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Computational

What can Simple Systems do?

Schools of fish N i
[Sumpter et al. ’08] ik

Insects colonies

[Franks et al. ’02] é’r

Flocks of birds

S [Ben-Shahar et al. ’10]

Biological Systems
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[1] A. Demers et al., “Epidemic algorithms for replicated database maintenance,” in Proc. of 6th ACM
PODC, 1987.
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Model: v'. Problem: v'. Algorithms: Dynamics

— Very simple distributed algorithms: For every graph

G = (V,FE), agent u € V and round t € N, states are

updated according to fixed rule f(o(u),o(S)) of current

= state o(u) and symmetric function of states o(5) of a
random sample S of neighbors.
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We ask 4 Questions

Can dynamics be used to perform
algorithmically-interesting tasks?

What are the minimal model requirements which
allow effective information spreading?

Can we develop a comparative approach to
dynamics?

Can dynamics solve problems which are
non-trivial even in centralized setting?
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The Simplest One: Voter Dynamics

Widely studied process since "70s. .\C?
Martingale argument shows O N
probability color wins o its initial O O
volume.

| | o ©
Polynomial convergence time,
even on good expanders.

voting process > A random walk

starts at each node.
When two walkers
meet, they coalesce.
This process,
observed backwards,
is distributed like the
Voter dynamics.

node u

node us

coalescence process ! t




Question 1/4

Can dynamics, other than the few
studied in physics, be rigorously
analyzed and used to perform
algorithmically-interesting tasks?
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Opinions,” in Proc. of 27th ACM-SIAM SODA, 2016.

n
the Power of Two Choices,” in Proc. of 23rd ACM SPAA, 2011.
o

plurality consensus,” Distrib. Comput., pp. 1-14, Nov. 2016.

The Power of Dynamics: Plurality Consensus

Computing the Median
2-Median dynamics [1]. Converge to O(/nlogn) E o @

approximation of median of system in O(logn) QL.
rounds w.h.p., even if O(y/n) states are arbitrarily \ o
changed at each round (O(y/n)-bounded ®
adversary). e O

B. Doerr, Leslie A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler, “Stabilizing Consensus with
L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri, and L. Trevisan, “Simple dynamics for

L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Stabilizing Consensus with Many
10-1



The Power of Dynamics: Plurality Consensus

Computing the Median

2-Median dynamics [1]. Converge to O(/nlogn) E o .LO
approximation of median of system in O(logn) 3
rounds w.h.p., even if O(y/n) states are arbitrarily \
changed at each round (O(y/n)-bounded

adversary). e O

Computing the Majority
3-Majority dynamics [2,3]|. If plurality has bias E g
O(vknlogn), converges to it in O(klogn) rounds \

w.h.p., even against o(4/n/k)-bounded adversary. o ©

Without bias, converges in poly(k).
h-majority converges in Q(k/h?). o ©

1] B. Doerr, Leslie A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler, “Stabilizing Consensus with
the Power of Two Choices,” in Proc. of 23rd ACM SPAA, 2011.
2] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri, and L. Trevisan, “Simple dynamics for

pl-urality consensus,” Distrib. Comput., pp. 1-14, Nov. 2016.
3] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Stabilizing Consensus with Many

Opinions,” in Proc. of 27th ACM-SIAM SODA, 2016.
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Breaking Symmetry in Dynamics
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amplifying an initial
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Breaking Symmetry in Dynamics

Simple symmetric random walk:
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Breaking Symmetry in Dynamics

Simple symmetric random walk:

11
2. 2
g———e— V4 o o o o o -
I token
------------------- Q(m?) steps to “escape” -=-=-=-===-=-s-u--

- -
- -~ - -
- - ~ P -

- ~ -

___________

/ token m
------ jump of expected length A -----3

| ----------------- O((m/))?) steps to “escape” =-=-=======-==-




Breaking Symmetry in Dynamics

Folklore Lemma [1].

{X:}: a Markov chain with finite state space €2,
fQ— N, Y, = f(X),

m € [n] a “target value” and

r=inf{t € N : Y; > m}.

If Vx € Q) with f(x) < m — 1, it holds

1. Positive drift: E[Y;11 | X = 2] > f(2z) +

(¥ > 0),
2. Bounded jumps: Pr{Y, > am} < am/n (a > 1),
then m
Eir <2a—.
7] J

[1] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Stabilizing Consensus with Many

Opinions,” in Proc. of 27th ACM-SIAM SODA, 2016.
11 -



A Global Measure of Bias

3-Majority converges in ©(k) rounds... ® i}
Undecided-State dynamics [1]. If ®

majority /second-majority (¢pma;/Condmq;) is at \ o
least 1 + ¢, system converges to plurality within ®
©(md(c)) rounds w.h.p. o ©

[1] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and R. Silvestri, “Plurality Consensus in the Gossip

Model,” in Proc. of 26th ACM-SIAM SODA, 2015.
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Evolution of Undecided-State Dynamics
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From Consensus to Information Spreading
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Question 2/4

What are the minimal model
requirements with respect to
achieving basic information
dissemination tasks under
conditions of increased
uncertainty?

15



Self-stabilizing Information Spreading

Sources’ bits (and other agents’ states) may change in
response to external environment.
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Self-stabilizing Information Spreading

Sources’ bits (and other agents’ states) may change in
response to external environment.

More generally, system is initialized in arbitrary state
(self-stabilization).

16 -
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(Self-Stab.) Inf. Spreading vs Synchronization
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Self-Stab.) Inf. Spreading vs Synchronization

Self-stablizing algorithms converge from
any nitial configuration

£
2
3
g
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S.-otab. Sync. in PULL with Small Messages?
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2-Choices dynamics. Converge to consensus in O(logn) rounds with
high probability.
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The Message Reduction Lemma

Parts of message can come

bitwise-independent P from different agents:
= 0170
2 [1]o[1]o]o]1]0]1
oy 0f1]1 0@1
L{1(1
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The Message Reduction Lemma

bitwise-independent P

Public

110(11010]1]0]1

J Message Reduction

Lemma
2 {/7
SIMUL(P)
= R
glo[1]1]1]|E~
= i

1{0[1/0]0[1]0]1

s31q
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Results: 3 Bits suffice...

Theorem (Clock Syncronization) [1]. There is
a self-stabilizing clock synchronization protocol
which synchronizes a clock modulo T in

~

O(lognlogT) rounds w.h.p. using 3-bit messages.

Corollary (Self-stabilizing Majority
Infromation Spreading) [1]. There is a
self-stabilizing Majority Information Spreading
protocol which converges in O(logn) rounds w.h.p
using 3-bit messages, provided majority is
supported by (% + ¢)-fraction of source agents.

[1] L. Boczkowski, A. Korman, and E. Natale, “Minimizing Message Size in Stochastic Communication
Patterns: Fast Self-Stabilizing Protocols with 3 bits,” in Proc. of 28th ACM-SIAM SODA, 2017.



Noisy Information Spreading

Communication model: PUSH model [1]:
at each round each agent can send a bit to another
one chosen uniformly at random.

[1] B. Pittel, “On Spreading a Rumor,” STAM J. Appl. Math., vol. 47, no. 1, pp. 213-223, Mar. 1987.
21 -1



Noisy Information Spreading

Communication model: PUSH model [1]:
at each round each agent can send a bit to another
one chosen uniformly at random.
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Noisy Information Spreading

Noise: before being received, each bit is flipped with
probability 1/2 — e (e = n—c"st),
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Configuration ¢ := (#¥e& /n, #¥e /n, # ¥ /n)
d-majority-biased configuration w.r.t. ¥e:

# e /n—H#¥e/n >0

H e /n—H#¥e/n >0

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.
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Majority-Preserving Matrix

Random Noise acting Message
sender according to distributed
in conf. c matrix P as c- P
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Random Noise acting Message
sender according to distributed
in conf. c matrix P as c- P

................ -;

(e, d)-majority-preserving noise matrix:
(cP)g— (cP)g > b
(cP)gq— (cP)g > €6
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Main Result

Theorem [1]. Let S be the initial set of agents
with opinions in [k|. Suppose that S is § =

Q(y/log n/|S|)-majority-biased with |S| = Q(loegz”)
and the noise matrix P is (e, §)-majority-preserving.
Then the plurality consensus problem can be solved
in O(loe%n) rounds w.h.p., with O(loglogn + log <)
memory per node.

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.
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) — Feinerman et al.
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Probability Amplification: Binomial vs Beta

. . . A
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Probability Amplification: Binomial vs Beta

>)A
A dice with k faces is =
thrown ¢ times. %
8
o
—
o,

M := most frequent face in the ¢ throws (breaking ties at random).

For any j # 1
Pr(M =1) —Pr(M = j) > const - VIy(1 =)=
Given p € (0,1) and | | o\ . y
0 < j < {it holds: Pr(Bin(n,p) < j) = Z <i>p (1-p)*
j<i<t

p .
_ ( e 1> <j+1>/ 2/ (1—2)"7 7 dz = Pr(Beta(n — k. k+1) <1 -
J T 0

Open Problem: Multinomial vs Dirichlet?
26 -



Noisy PUSH: v'. Noisy PULL?

o-uniform noise criterion. Any time some agent u
observes an agent v holding some message m € X, the
probability that u actually receives a message m’ is at least
o, for any m’ € X.

Theorem [1]. For any rumor spreading protocol in the
Noisy PULL model with o-uniform noise, no agent can have
a guess on the source’s opinion which is correct with
probability > £ in less than Q(%) rounds.

Ideas: Pearson’s Lemma + Pinsker’s inequality 4+ chain rule
for KL, div. = hypothesis testing bounds for adaptive coin
tossing

[1] L. Boczkowski, O. Feinerman, A. Korman, and E. Natale, “Limits for Rumor Spreading in stochastic
populations,” in Proc. of 9th I'TCS, 2018.



Question 3/4

The techniques to study dynamics are
ad-hoc arguments which do not
generalize.

Can we perahps develop
techniques to compare dynamics?

28



Voter vs 2-Choice vs 3-Majority

2

o @) (@) C.

U[ o~ 0%0] = Efage—o'e] = | Cred 55

. o.o Cred( —+ o in
HH HH
3-Majority 2-Choice

[1] P. Berenbrink, A. Clementi, R. Elsasser, P. Kling, F. Mallmann-Trenn, and E. Natale, “Ignore or
Comply?: On Breaking Symmetry in Consensus,” in Proc. of ACM PODC, 2017.
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3-Majority 2-Choice

Theorem (simplified) [1] . In the 2-Choice process, from
the n-color conf., w.h.p. no color has support larger than

~vlogn for W% rounds. Starting from any conf. ¢ € C,
3-Majority reaches consensus w.h.p. in O(n3/4 log”/® n)
rounds.

[1] P. Berenbrink, A. Clementi, R. Elsasser, P. Kling, F. Mallmann-Trenn, and E. Natale, “Ignore or
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29 -2



Voter vs 2-Choice vs 3-Majority

2

o o o c

ﬂéo:o o] — {,[ . ] — 1 4 Sred _ , —L

[ . Q:.-o o.o Cred( + n Z] n
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3-Majority 2-Choice

Theorem (simplified) [1] . In the 2-Choice process, from
the n-color conf., w.h.p. no color has support larger than

~vlogn for WQI% rounds. Starting from any conf. ¢ € C,
3-Majority reaches consensus w.h.p. in O(n3/4 log”/® n)
rounds.

Key theorem. Consider Voter and 3-Majority dynamics
started from same initial conf c. There is a coupling s.t.,

after any round, the number of colors in Voter is at least

that of 3-Majority.

[1] P. Berenbrink, A. Clementi, R. Elsasser, P. Kling, F. Mallmann-Trenn, and E. Natale, “Ignore or
Comply?: On Breaking Symmetry in Consensus,” in Proc. of ACM PODC, 2017.



Majorization Theory and Strassen’s Theorem

Folklore:
Pr(X > t) > Pr(Y > t) then there is
a coupling s.t. Pr(X >Y) =1.
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Strassen’s Theorem (finite case).
Given a DAG G and X,Y € V r.v.s, if
Pr(X descendant of u) >

Pr(Y descendant of u) for each u € V/,

then there is a coupling s.t.
Pr(X descendant of Y) = 1.
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Majorization Theory and Strassen’s Theorem

Folklore:
Pr(X > t) > Pr(Y > t) then there is
a coupling s.t. Pr(X >Y) =1.

Strassen’s Theorem (finite case).
Given a DAG G and X,Y € V r.v.s, if
Pr(X descendant of u) >

Pr(Y descendant of u) for each u € V/,

then there is a coupling s.t.
Pr(X descendant of Y) = 1.

Using tools from Majorization Theory: Vconf c,

Pr(Conf. ¢’ given by 3-Majority majorizes c¢) >

Pr(Conf. ¢’ given by Voter majorizes c)

where majorize means, Vi, y . c/; > 3. ¢; with colors in ¢’
ordered decreasingly.
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Question 4/4

Dynamics can solve Consensus,
Median, Majority, in a robust way, but
this is trivial in centralized setting..

Can dynamics solve a problem
non-trivial in centralized setting?

31



Community Detection

Min. Bisection Problem.
Given a graph GG with 2n nodes. Find

S = arg gncle E(S,V —9).
|S|=n

Min. Bisection is NP-Complete [1].

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,”
Theoretical Computer Science, vol. 1, no. 3, pp. 237267, Feb. 1976.
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Community Detection

Min. Bisection Problem.
Given a graph GG with 2n nodes. Find

S = arg gncle E(S,V —9).
|S|=n

Min. Bisection is NP-Complete [1].

Stochastic Block Model. Two “communities” of

equal size V; and V5, each edge inside a community ﬁ~' ..q.- “‘1’7'
included with probability p, each edge across ‘a‘ ’~%

communities included with probability ¢ < p.

Reconstruction problem. Given
graph generated by SBM, find
original partition.

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,”

Theoretical Computer Science, vol. 1, no. 3, pp. 237267, Feb. 1976.
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The Averaging Dynamics

Asynchronous Averaging Protocol:

At each round a random edge is chosen.

e At the first activation, each node picks at random +1 or —1.

e (Dynamics) At each activation, the nodes averages their values.
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[1]L. Becchetti, A. Clementi, P. Manurangsi, E. Natale, F. Pasquale, P. Raghavendra, L. Trevisan,
“Distributed Asynchronous Averaging for Community Detection,” arXiv:1703.05045 [cs|, Mar. 2017.
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The Averaging Dynamics

Asynchronous Averaging Protocol:

At each round a random edge is chosen.

e At the first activation, each node picks at random +1 or —1.

e (Dynamics) At each activation, the nodes averages their values.

Theorem (Corollary of [1]). There exist 71, 2 s.t., if each node
labels itself with the sign of the difference of its value at two
activation times 7 and 79, then with prob. 1 — €, after

O-(nlogn + %) rounds, we get a correct reconstruction up to an
e-fraction of nodes.

[1]L. Becchetti, A. Clementi, P. Manurangsi, E. Natale, F. Pasquale, P. Raghavendra, L. Trevisan,

“Distributed Asynchronous Averaging for Community Detection,” arXiv:1703.05045 [cs|, Mar. 2017.
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< [Averaging Dynamics] ’ ( m )

Al nodes at the same time:
o At ¢t =0, randomly pick
value () € {+1,-1}.

e Then, at each round
1. Set value z*) to lazy
average of neighbors,
2. Set label to blue if
) < 2zt red
otherwise.

O
O O

O O

[1]L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Find Your Place: Simple
Distributed Algorithms for Community Detection,” in Proc. of 28th ACM-SIAM SODA, 2017.
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E|Averaging Dynamics]” ([1])

Al nodes at the same time:
o At t =0, randomly pick
) Lab 1
value () € {+1,-1}. a ¢ - - - - - -
e Then, at each round +1
1. Set value z(*) to lazy . PQO‘OO‘
average of neighbors, % o
2. Set label to blue if = | v .
() < x(t_l), red —1|r ¥
otherwise. -
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Community Detection via (Parallel) Averaging

Theorem (Informal) [1].
G =ViUJVz, E) s.t. Lakielli EEENEN

i) x = 1y, — 1y, close to .
right-eigenvector of eigenvalue A Ci N

of transition matrix of G, and '\ /QOO’OO* -1
ii) gap between Ay and A3 N >
sufficiently large, 1 o

then Averaging (approximately) |
identifies (V7, V3).

[1]L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Find Your Place: Simple
Distributed Algorithms for Community Detection,” in Proc. of 28th ACM-SIAM SODA, 2017.
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We provide 4 Answers

Can dynamics be used to perform
algorithmically-interesting tasks?

They can efficiently compute median, majority, average.
(Problem: quantiles?)

What are the minimal model requirements which allow
effective information spreading?

Self-stabilizing scenarios can allow very small messages.

When noisy, active or passive communication is a big deal.

Can we develop a comparative approach to dynamics?

We can ensure the existence of a coupling among some
dynamics. Work in progress on generalizing techniques.

Can dynamics solve problems which are non-trivial even
in centralized setting?

The averaging dynamics shows denser clusters. Doing the
same for 3-Majority would be the first rigorous result on
Label Propagation Algorithms.

36



(More on analyzing LPAs)

” of Label Propagation Algorithms

tially sample a random color, then

lon

t

1neariza

Averagins is a “I
e Fach node

1ni

e at each round, each node switch to the majority label of a

sample of neighbors.
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Conclusions

It is important to study systems
in-between interacting-particle systems
and human-made ones.

TCS can analyze dynamics,

helping to understand principles behind
complex systems’ ability to compute in
simple chaotic ways.
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