
1

Emanuele Natale

Computing through Dynamics:
Principles for Distributed Coordination

IRIF
Algorithms and Complexity seminar

14 December 2017, Paris

talk.enatale.name



2

Examples of “Natural” Algorithms

How Physarum polycephalum
finds shortest paths [BBDKM ’14]

How birds of flocks synchronize
their flight [Chazelle ’09]

How are sensory
organ precursor
cells selected in a
fly’s nervous system
[AABHBB ’11]

How ants perform collective
navigattion [FHBGKKF ’16]

How do ants
decide where
to relocate
their nest?
[GMRL ’15]



3 - 1

What can Simple Systems do?

Computer
Networks

Distributed
Computing

Interacting Particle
Systems

Statistical
MechanicsC

om
pu

ta
tio

na
l

Po
we

r

SYSTEMS

SCIENCES



3 - 2

What can Simple Systems do?

Computer
Networks

Distributed
Computing

Interacting Particle
Systems

Statistical
MechanicsC

om
pu

ta
tio

na
l

Po
we

r

SYSTEMS
Opportunistic

Networks

SCIENCES



3 - 3

What can Simple Systems do?

Computer
Networks

Distributed
Computing

Interacting Particle
Systems

Statistical
MechanicsC

om
pu

ta
tio

na
l

Po
we

r

SYSTEMS
Opportunistic

Networks

SCIENCES

DNA/Molecular Computing, Programmable
Matter, Swarms of Simple Robots



3 - 4

What can Simple Systems do?

Computer
Networks

Distributed
Computing

Interacting Particle
Systems

Statistical
MechanicsC

om
pu

ta
tio

na
l

Po
we

r

SYSTEMS
Opportunistic

Networks

SCIENCES

Schools of fish
[Sumpter et al. ’08]

Insects colonies
[Franks et al. ’02]

Flocks of birds
[Ben-Shahar et al. ’10]

Biological Systems
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Unstructured Communication Models

• Chaotic
• Anonymous
• Parsimonious

• Uni-directional
(Passive/Active)

• Noisy

Requirements:
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Unstructured Communication Models

PULL(h, `) model [1]: at
each round each agent can
observe h other agents
chosen independently and
uniformly at random, and
shows ` bits to her
observers.

????????

????????

• Chaotic
• Anonymous
• Parsimonious

• Uni-directional
(Passive/Active)

• Noisy

Requirements:

[1] A. Demers et al., “Epidemic algorithms for replicated database maintenance,” in Proc. of 6th ACM
PODC, 1987.
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PULL(h, `) model [1]: at
each round each agent can
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chosen independently and
uniformly at random, and
shows ` bits to her
observers.
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• Uni-directional
(Passive/Active)

• Noisy
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Requirements:

[1] A. Demers et al., “Epidemic algorithms for replicated database maintenance,” in Proc. of 6th ACM
PODC, 1987.
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Natural Algorithms for Consensus

This way! This way!

THIS WAY!
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Model: X. Problem: X. Algorithms: Dynamics

Very simple distributed algorithms: For every graph
G = (V,E), agent u ∈ V and round t ∈ N, states are
updated according to fixed rule f(σ(u), σ(S)) of current
state σ(u) and symmetric function of states σ(S) of a
random sample S of neighbors.
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Model: X. Problem: X. Algorithms: Dynamics

Very simple distributed algorithms: For every graph
G = (V,E), agent u ∈ V and round t ∈ N, states are
updated according to fixed rule f(σ(u), σ(S)) of current
state σ(u) and symmetric function of states σ(S) of a
random sample S of neighbors.
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Examples of Dynamics

• 2-Median dynamics
• 2-Choice dynamics

• Voter dynamics

• 3-Majority dynamics
• Undecided-State dynamics

=⇒

• Averaging dynamics (asynchronous)
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We ask 4 Questions

• Can dynamics be used to perform
algorithmically-interesting tasks?

• Can dynamics solve problems which are
non-trivial even in centralized setting?

• Can we develop a comparative approach to
dynamics?

• What are the minimal model requirements which
allow effective information spreading?
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The Simplest One: Voter Dynamics

=⇒

Widely studied process since ’70s.

Martingale argument shows
probability color wins ∝ its initial
volume.
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The Simplest One: Voter Dynamics

=⇒

Widely studied process since ’70s.

Martingale argument shows
probability color wins ∝ its initial
volume.

Polynomial convergence time,
even on good expanders.

voting process

coalescence process

node u1

node u2

node u3

node u4

t

t′ A random walk
starts at each node.
When two walkers
meet, they coalesce.
This process,
observed backwards,
is distributed like the
Voter dynamics.
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Question 1/4

Can dynamics, other than the few
studied in physics, be rigorously

analyzed and used to perform
algorithmically-interesting tasks?
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The Power of Dynamics: Plurality Consensus

2-Median dynamics [1]. Converge to O(
√
n logn)

approximation of median of system in O(logn)
rounds w.h.p., even if O(

√
n) states are arbitrarily

changed at each round (O(
√
n)-bounded

adversary).

Computing the Median
=⇒

<
<

[1] B. Doerr, Leslie A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler, “Stabilizing Consensus with
the Power of Two Choices,” in Proc. of 23rd ACM SPAA, 2011.
[2] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri, and L. Trevisan, “Simple dynamics for
plurality consensus,” Distrib. Comput., pp. 1–14, Nov. 2016.
[3] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Stabilizing Consensus with Many
Opinions,” in Proc. of 27th ACM-SIAM SODA, 2016.
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3-Majority dynamics [2,3]. If plurality has bias
O(
√
kn logn), converges to it in O(k logn) rounds

w.h.p., even against o(
√
n/k)-bounded adversary.

Without bias, converges in poly(k).
h-majority converges in Ω(k/h2).

Computing the Majority

=⇒

[1] B. Doerr, Leslie A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler, “Stabilizing Consensus with
the Power of Two Choices,” in Proc. of 23rd ACM SPAA, 2011.
[2] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri, and L. Trevisan, “Simple dynamics for
plurality consensus,” Distrib. Comput., pp. 1–14, Nov. 2016.
[3] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Stabilizing Consensus with Many
Opinions,” in Proc. of 27th ACM-SIAM SODA, 2016.
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Breaking Symmetry in Dynamics

1
2

1
2

token0 m

Ω(m2) steps to “escape”

Simple symmetric random walk:

m

jump of expected length λ

O((m/λ)2) steps to “escape”

Stationary-in-expectation random walk:

token0
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Breaking Symmetry in Dynamics

Folklore Lemma [1].
{Xt}t a Markov chain with finite state space Ω,
f : Ω→ N, Yt = f(Xt),
m ∈ [n] a “target value” and
τ = inf{t ∈ N : Yt ≥ m}.
If ∀x ∈ Ω with f(x) ≤ m− 1, it holds
1. Positive drift: E[Yt+1 |Xt = x] > f(x) + ψ

(ψ > 0),
2. Bounded jumps: Pr{Yτ ≥ αm} ≤ αm/n (α > 1),
then

E[τ ] ≤ 2αm
ψ
.

[1] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Stabilizing Consensus with Many
Opinions,” in Proc. of 27th ACM-SIAM SODA, 2016.
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A Global Measure of Bias

Undecided-State dynamics [1]. If
majority/second-majority (cmaj/c2ndmaj) is at
least 1 + ε, system converges to plurality within
Θ̃(md(c)) rounds w.h.p.

=⇒

?

3-Majority converges in Θ̃(k) rounds...

[1] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and R. Silvestri, “Plurality Consensus in the Gossip
Model,” in Proc. of 26th ACM-SIAM SODA, 2015.
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1 ≤ md



 �md



 ≤ k

md(c(0)) :=
k∑

i=1

 c
(0)
i

c
(0)
maj

2

=1+D



,

[1] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and R. Silvestri, “Plurality Consensus in the Gossip
Model,” in Proc. of 26th ACM-SIAM SODA, 2015.
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Evolution of Undecided-State Dynamics
Simulation of the

growth factor:

1 +

(
n− 2q(t) − c(t)

1

)2

n2 +
2
(∑k

i=1
c

(t)
i

c
(t)
1
−md(c(t))

)
· (c1)2

n2

E
[
c

(t+1)
i

∣∣∣c(t)
]

= c
(t)
i ·

c
(t)
i + 2q(t)

n︸ ︷︷ ︸
Growth factor



14 - 1

From Consensus to Information Spreading

FOOD!
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From Consensus to Information Spreading
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Question 2/4

What are the minimal model
requirements with respect to
achieving basic information
dissemination tasks under

conditions of increased
uncertainty?
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Self-stabilizing Information Spreading

Sources’ bits (and other agents’ states) may change in
response to external environment.
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Self-stabilizing Information Spreading

Sources’ bits (and other agents’ states) may change in
response to external environment.

More generally, system is initialized in arbitrary state
(self-stabilization).
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(Self-Stab.) Inf. Spreading vs Synchronization
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(Self-Stab.) Inf. Spreading vs Synchronization

Self-stablizing algorithms converge from
any initial configuration
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S.-Stab. Sync. in PULL with Small Messages?

2-Choices dynamics. Converge to consensus in O(logn) rounds with
high probability.

=⇒ ?
?

?



18 - 2

S.-Stab. Sync. in PULL with Small Messages?

2-Choices dynamics. Converge to consensus in O(logn) rounds with
high probability.

=⇒

=⇒0 11 0 10

1 11

0 01

0 11 0 10

0 11

0 01

?
?

?



18 - 3

S.-Stab. Sync. in PULL with Small Messages?

2-Choices dynamics. Converge to consensus in O(logn) rounds with
high probability.

=⇒

=⇒0 11 0 10

1 11

0 01

0 11 0 10

0 11

0 01

T -clock can be sync. in O(logn log T ) rounds w.h.p. using log T bits.
But Binary Information Spreading can be done in 1-bit PULL...

?
?

?



18 - 4

S.-Stab. Sync. in PULL with Small Messages?

2-Choices dynamics. Converge to consensus in O(logn) rounds with
high probability.

=⇒

=⇒0 11 0 10

1 11

0 01

0 11 0 10

0 11

0 01

T -clock can be sync. in O(logn log T ) rounds w.h.p. using log T bits.
But Binary Information Spreading can be done in 1-bit PULL...

?
?

?



18 - 5

S.-Stab. Sync. in PULL with Small Messages?

2-Choices dynamics. Converge to consensus in O(logn) rounds with
high probability.

=⇒

=⇒0 11 0 10

1 11

0 01

0 11 0 10

0 11

0 01

T -clock can be sync. in O(logn log T ) rounds w.h.p. using log T bits.
But Binary Information Spreading can be done in 1-bit PULL...

?
?

?

!Ok only
if indices
are
already
sync!
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The Message Reduction Lemma

bitwise-independent P

1 0 11 001 0

Pu
bl

ic
Parts of message can come
from different agents:

0 11 0 10

1 11

0 01

∼
0 11 0 10

1 11

0 01
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The Message Reduction Lemma
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Results: 3 Bits suffice...

Corollary (Self-stabilizing Majority
Infromation Spreading) [1]. There is a
self-stabilizing Majority Information Spreading
protocol which converges in Õ(logn) rounds w.h.p
using 3-bit messages, provided majority is
supported by ( 1

2 + ε)-fraction of source agents.

Theorem (Clock Syncronization) [1]. There is
a self-stabilizing clock synchronization protocol
which synchronizes a clock modulo T in
Õ(logn log T ) rounds w.h.p. using 3-bit messages.

[1] L. Boczkowski, A. Korman, and E. Natale, “Minimizing Message Size in Stochastic Communication
Patterns: Fast Self-Stabilizing Protocols with 3 bits,” in Proc. of 28th ACM-SIAM SODA, 2017.
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Noisy Information Spreading

Communication model: PUSH model [1]:
at each round each agent can send a bit to another
one chosen uniformly at random.

????????

[1] B. Pittel, “On Spreading a Rumor,” SIAM J. Appl. Math., vol. 47, no. 1, pp. 213–223, Mar. 1987.
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Noisy Information Spreading

Communication model: PUSH model [1]:
at each round each agent can send a bit to another
one chosen uniformly at random.
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Noisy Information Spreading

Noise: before being received, each bit is flipped with
probability 1/2− ε (ε = n−const).

!
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probability 1/2− ε (ε = n−const).
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Previous Work: Breathe Before Speaking [1]

blue vs red:
1/0

trivial
strategy

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.
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blue vs red:
3/1

trivial
strategy

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.
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Previous Work: Breathe Before Speaking [1]

blue vs red:
9/6 = 1.5

trivial
strategy

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.
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18/13 ≈ 1.4
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[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
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Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
1/0

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
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2015.

1



22 - 9

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
1/0

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

1



22 - 10

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
1/0

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

1



22 - 11

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
1/0

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

1



22 - 12

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
3/1

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

12 2
2



22 - 13

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
3/1

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

12 2
2



22 - 14

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
3/1

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

12 2
2



22 - 15

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
8/4

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

13 3
3 3

3

33 32 2
2



22 - 16

Previous Work: Breathe Before Speaking [1]

Idea: the “hops” a message does from source to agent
deteriorate it; number of hops can be reduced with phases of
waiting before spreading.

Stage 1: Spreading

blue vs red:
40/24 ≈ 1.7

[1] O. Feinerman, B. Haeupler, and A. Korman, “Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication,” Distrib. Comput., pp. 1–17, Jun.
2015.

13 3
3 3

3

33 32 2
2



22 - 17

Previous Work: Breathe Before Speaking [1]
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Our Generalization: Multivalued Case [1]

!

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.
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Noise Matrix:

∼P :=

 
p ,

p ,

p ,

p , p ,

p ,

p , p ,

p ,

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.
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Our Generalization: Multivalued Case [1]

δ-majority-biased configuration w.r.t. :

Noise Matrix:

Configuration c := (# /n,# /n,# /n)

∼P :=

 
p ,

p ,

p ,

p , p ,

p ,

p , p ,

p ,

# /n−# /n > δ

# /n−# /n > δ

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.
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Majority-Preserving Matrix

Random
sender
in conf. c

Noise acting
according to
matrix P

Message
distributed
as c · P
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Majority-Preserving Matrix

(cP ) − (cP ) > εδ

(cP ) − (cP ) > εδ

(ε, δ)-majority-preserving noise matrix:

(cP ) − (cP ) > εδ

(cP ) − (cP ) > εδ

Random
sender
in conf. c

Noise acting
according to
matrix P

Message
distributed
as c · P
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Main Result

Theorem [1]. Let S be the initial set of agents
with opinions in [k]. Suppose that S is δ =
Ω(
√

logn/|S|)-majority-biased with |S| = Ω( logn
ε2 )

and the noise matrix P is (ε, δ)-majority-preserving.
Then the plurality consensus problem can be solved
in O( logn

ε2 ) rounds w.h.p., with O(log logn+ log 1
ε )

memory per node.

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.
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|S| = 1 =⇒ rumor spreading in O( logn
ε2 ) rounds
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Theorem [1]. Let S be the initial set of agents
with opinions in [k]. Suppose that S is δ =
Ω(
√

logn/|S|)-majority-biased with |S| = Ω( logn
ε2 )

and the noise matrix P is (ε, δ)-majority-preserving.
Then the plurality consensus problem can be solved
in O( logn

ε2 ) rounds w.h.p., with O(log logn+ log 1
ε )

memory per node.

P =
(

1/2 + ε 1/2− ε
1/2− ε 1/2 + ε

)
=⇒ Feinerman et al.

|S| = 1 =⇒ rumor spreading in O( logn
ε2 ) rounds

[1] P. Fraigniaud and E. Natale, “Noisy Rumor Spreading and Plurality Consensus,” in Proc. of ACM
PODC, 2016.



26 - 1

Probability Amplification: Binomial vs Beta

A dice with k faces is
thrown ` times.
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Probability Amplification: Binomial vs Beta

A dice with k faces is
thrown ` times.

M := most frequent face in the ` throws (breaking ties at random).

For any j 6= 1
Pr (M = 1)− Pr (M = j) ≥ const ·
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Probability Amplification: Binomial vs Beta

A dice with k faces is
thrown ` times.

M := most frequent face in the ` throws (breaking ties at random).

For any j 6= 1
Pr (M = 1)− Pr (M = j) ≥ const ·

√
` γ(1− γ2)

`−1
2

pr
ob

ab
ili

ty

γ

1 2 . . . face

Open Problem: Multinomial vs Dirichlet?

Pr (Bin(n, p) ≤ j) =
∑

j<i≤`

(
`

i

)
pi (1− p)`−i

=
(

`

j + 1

)
(j + 1)

∫ p

0
zj (1− z)`−j−1 dz = Pr (Beta(n− k, k + 1) < 1− p).

Given p ∈ (0, 1) and
0 ≤ j ≤ ` it holds:
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Noisy PUSH: X. Noisy PULL?

δ-uniform noise criterion. Any time some agent u
observes an agent v holding some message m ∈ Σ, the
probability that u actually receives a message m′ is at least
δ, for any m′ ∈ Σ.

Theorem [1]. For any rumor spreading protocol in the
Noisy PULL model with δ-uniform noise, no agent can have
a guess on the source’s opinion which is correct with
probability ≥ 2

3 in less than Ω( nδ
(1−2δ)2 ) rounds.

[1] L. Boczkowski, O. Feinerman, A. Korman, and E. Natale, “Limits for Rumor Spreading in stochastic
populations,” in Proc. of 9th ITCS, 2018.

Ideas: Pearson’s Lemma + Pinsker’s inequality + chain rule
for KL div. = hypothesis testing bounds for adaptive coin
tossing
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Question 3/4

The techniques to study dynamics are
ad-hoc arguments which do not
generalize.

Can we perahps develop
techniques to compare dynamics?
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Voter vs 2-Choice vs 3-Majority

E[ ] ==⇒ E[ ]=⇒︸ ︷︷ ︸
3-Majority

︸ ︷︷ ︸
2-Choice

= cred

(
1 + cred

n −
∑
j

c2
j

n2

)

[1] P. Berenbrink, A. Clementi, R. Elsässer, P. Kling, F. Mallmann-Trenn, and E. Natale, “Ignore or
Comply?: On Breaking Symmetry in Consensus,” in Proc. of ACM PODC, 2017.
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Theorem (simplified) [1] . In the 2-Choice process, from
the n-color conf., w.h.p. no color has support larger than
γ logn for n

γ2 logn rounds. Starting from any conf. c ∈ C,
3-Majority reaches consensus w.h.p. in O(n3/4 log7/8 n)
rounds.

[1] P. Berenbrink, A. Clementi, R. Elsässer, P. Kling, F. Mallmann-Trenn, and E. Natale, “Ignore or
Comply?: On Breaking Symmetry in Consensus,” in Proc. of ACM PODC, 2017.
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Voter vs 2-Choice vs 3-Majority

E[ ] ==⇒ E[ ]=⇒︸ ︷︷ ︸
3-Majority

︸ ︷︷ ︸
2-Choice

= cred

(
1 + cred

n −
∑
j

c2
j

n2

)

Theorem (simplified) [1] . In the 2-Choice process, from
the n-color conf., w.h.p. no color has support larger than
γ logn for n

γ2 logn rounds. Starting from any conf. c ∈ C,
3-Majority reaches consensus w.h.p. in O(n3/4 log7/8 n)
rounds.

Key theorem. Consider Voter and 3-Majority dynamics
started from same initial conf c. There is a coupling s.t.,
after any round, the number of colors in Voter is at least
that of 3-Majority.

[1] P. Berenbrink, A. Clementi, R. Elsässer, P. Kling, F. Mallmann-Trenn, and E. Natale, “Ignore or
Comply?: On Breaking Symmetry in Consensus,” in Proc. of ACM PODC, 2017.
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Majorization Theory and Strassen’s Theorem

Folklore:
Pr(X > t) ≥ Pr(Y > t) then there is
a coupling s.t. Pr(X ≥ Y ) = 1.
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Majorization Theory and Strassen’s Theorem

Folklore:
Pr(X > t) ≥ Pr(Y > t) then there is
a coupling s.t. Pr(X ≥ Y ) = 1.

Strassen’s Theorem (finite case).
Given a DAG G and X,Y ∈ V r.v.s, if
Pr(X descendant of u) ≥
Pr(Y descendant of u) for each u ∈ V ,
then there is a coupling s.t.
Pr(X descendant of Y ) = 1.

u

X
Y
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Majorization Theory and Strassen’s Theorem

Folklore:
Pr(X > t) ≥ Pr(Y > t) then there is
a coupling s.t. Pr(X ≥ Y ) = 1.

Strassen’s Theorem (finite case).
Given a DAG G and X,Y ∈ V r.v.s, if
Pr(X descendant of u) ≥
Pr(Y descendant of u) for each u ∈ V ,
then there is a coupling s.t.
Pr(X descendant of Y ) = 1.

Using tools from Majorization Theory: ∀conf c,
Pr(Conf. c’ given by 3-Majority majorizes c) ≥
Pr(Conf. c’ given by Voter majorizes c)
where majorize means, ∀i,

∑i
j c
′
j ≥

∑
j cj with colors in c′

ordered decreasingly.

u

X
Y
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Question 4/4

Dynamics can solve Consensus,
Median, Majority, in a robust way, but
this is trivial in centralized setting..

Can dynamics solve a problem
non-trivial in centralized setting?
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Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg min
S⊂V
|S|=n

E(S, V − S).

Min. Bisection is NP-Complete [1].

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,”
Theoretical Computer Science, vol. 1, no. 3, pp. 237–267, Feb. 1976.



32 - 2

Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg min
S⊂V
|S|=n

E(S, V − S).

Min. Bisection is NP-Complete [1].

Stochastic Block Model. Two “communities” of
equal size V1 and V2, each edge inside a community
included with probability p, each edge across
communities included with probability q < p.

qp p

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,”
Theoretical Computer Science, vol. 1, no. 3, pp. 237–267, Feb. 1976.



32 - 3

Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg min
S⊂V
|S|=n

E(S, V − S).

Min. Bisection is NP-Complete [1].

Stochastic Block Model. Two “communities” of
equal size V1 and V2, each edge inside a community
included with probability p, each edge across
communities included with probability q < p.

qp p

Reconstruction problem. Given
graph generated by SBM, find
original partition. ∼

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,”
Theoretical Computer Science, vol. 1, no. 3, pp. 237–267, Feb. 1976.



33 - 1

The Averaging Dynamics
Asynchronous Averaging Protocol:
At each round a random edge is chosen.
• At the first activation, each node picks at random +1 or −1.
• (Dynamics) At each activation, the nodes averages their values.

?
?

?
? ?

?
?

???
? ? ? ?

?
?

? ? ?
?

? ?
?

?
?

?

[1]L. Becchetti, A. Clementi, P. Manurangsi, E. Natale, F. Pasquale, P. Raghavendra, L. Trevisan,
“Distributed Asynchronous Averaging for Community Detection,” arXiv:1703.05045 [cs], Mar. 2017.
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The Averaging Dynamics
Asynchronous Averaging Protocol:
At each round a random edge is chosen.
• At the first activation, each node picks at random +1 or −1.
• (Dynamics) At each activation, the nodes averages their values.

Theorem (Corollary of [1]). There exist τ1, τ2 s.t., if each node
labels itself with the sign of the difference of its value at two
activation times τ1 and τ2, then with prob. 1− ε, after
Oε(n logn+ n

λ2
) rounds, we get a correct reconstruction up to an

ε-fraction of nodes.
[1]L. Becchetti, A. Clementi, P. Manurangsi, E. Natale, F. Pasquale, P. Raghavendra, L. Trevisan,
“Distributed Asynchronous Averaging for Community Detection,” arXiv:1703.05045 [cs], Mar. 2017.
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“E[Averaging Dynamics]” ([1])
Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set value x(t) to lazy
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

[1]L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Find Your Place: Simple
Distributed Algorithms for Community Detection,” in Proc. of 28th ACM-SIAM SODA, 2017.
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[1]L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Find Your Place: Simple
Distributed Algorithms for Community Detection,” in Proc. of 28th ACM-SIAM SODA, 2017.
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Community Detection via (Parallel) Averaging

t

−1

+1
· · ·α

Va
lu

e

Label:
Theorem (Informal) [1].
G = (V1

⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to
right-eigenvector of eigenvalue λ2
of transition matrix of G, and
ii) gap between λ2 and λ3
sufficiently large,
then Averaging (approximately)

identifies (V1, V2).

[1]L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan, “Find Your Place: Simple
Distributed Algorithms for Community Detection,” in Proc. of 28th ACM-SIAM SODA, 2017.
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We provide 4 Answers
• Can dynamics be used to perform

algorithmically-interesting tasks?

• Can dynamics solve problems which are non-trivial even
in centralized setting?

• Can we develop a comparative approach to dynamics?

• What are the minimal model requirements which allow
effective information spreading?

They can efficiently compute median, majority, average.
(Problem: quantiles?)

Self-stabilizing scenarios can allow very small messages.
When noisy, active or passive communication is a big deal.

We can ensure the existence of a coupling among some
dynamics. Work in progress on generalizing techniques.

The averaging dynamics shows denser clusters. Doing the
same for 3-Majority would be the first rigorous result on
Label Propagation Algorithms.
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(More on analyzing LPAs)
Averagins is a “linearization” of Label Propagation Algorithms:
• Each node initially sample a random color, then
• at each round, each node switch to the majority label of a
sample of neighbors.
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Conclusions

It is important to study systems
in-between interacting-particle systems
and human-made ones.

TCS can analyze dynamics,
helping to understand principles behind
complex systems’ ability to compute in
simple chaotic ways.
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