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Schools of fish
[Sumpter et al. ’08]

Insects colonies
[Franks et al. ’02]

Flocks of birds
[Ben-Shahar et al. ’10]

Biological Systems
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Examples of Natural Algorithms

How Physarum polycephalum
finds shortest paths [BBDKM ’14]

How birds of flocks synchronize
their flight [Chazelle ’09]

How are sensory
organ precursor
cells selected in a
fly’s nervous system
[AABHBB ’11]

How ants perform collective
navigattion [FHBGKKF ’16]

How do ants
decide where
to relocate
their nest?
[GMRL ’15]
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• Chaotic
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• Parsimonious

• Uni-directional
(Passive/Active)

• Noisy

Animal communication:
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Natural Algorithms for Plurality Consensus

This way! This way!

THIS WAY!



Natural Algorithms for Plurality Consensus



Dynamics

Very simple distributed algorithms: For every graph
G = (V,E), agent u ∈ V and round t ∈ N, states are updated
according to fixed rule f(σ(u), σ(S)) of current state σ(u) and
symmetric function of states σ(S) of a random sample S of
neighbors.

(in
fo

rm
al

)



Dynamics

Very simple distributed algorithms: For every graph
G = (V,E), agent u ∈ V and round t ∈ N, states are updated
according to fixed rule f(σ(u), σ(S)) of current state σ(u) and
symmetric function of states σ(S) of a random sample S of
neighbors.

(in
fo

rm
al

)

Two examples:

=⇒• 3-Majority dynamics =⇒

?

? ?



Dynamics

Very simple distributed algorithms: For every graph
G = (V,E), agent u ∈ V and round t ∈ N, states are updated
according to fixed rule f(σ(u), σ(S)) of current state σ(u) and
symmetric function of states σ(S) of a random sample S of
neighbors.
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Two examples:

• Undecided-state dynamics
=⇒• 3-Majority dynamics
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The Power of Dynamics: Plurality Consensus

3-Majority dynamics [SPAA ’14, SODA
’16]. If plurality has bias O(

√
kn logn),

converges to it in O(k logn) rounds
w.h.p., even against o(

√
n/k)-bounded

adversary. Without bias, converges in
poly(k). h-majority converges in Ω(k/h2).
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The Power of Dynamics: Plurality Consensus

3-Majority dynamics [SPAA ’14, SODA
’16]. If plurality has bias O(

√
kn logn),

converges to it in O(k logn) rounds
w.h.p., even against o(

√
n/k)-bounded

adversary. Without bias, converges in
poly(k). h-majority converges in Ω(k/h2).

Undecided-State dynamics [SODA ’15]. If
majority/second-majority (cmaj/c2ndmaj)
is at least 1 + ε, system converges to
plurality within Θ̃(md(c)) rounds w.h.p.
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A Global Measure of Bias

1 ≤ md
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Undecided-State dynamics [SODA ’15]. If
majority/second-majority (cmaj/c2ndmaj) is at least 1 + ε,
system converges to plurality within Θ̃(md(c)) rounds w.h.p.



Applications: Broadcast Problem

FOOD!
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Applications: (Self-stabilizing) Broadcast Problem

Sources’ bits (and other agents’ states) may change in
response to external environment.

More generally, system is initialized in arbitrary state
(self-stabilization).
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(Self-Stab.) Broadcast vs Synchronization

Self-stablizing algorithms converge from
any initial configuration
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2-Majority dynamics [Doerr et al. ’11]. Converge to
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The Message Reduction Lemma

bitwise-independent P

1 0 11 001 0
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Results: 3 Bits suffice...

Corollary (Self-stabilizing Majority
Broadcast). Syn-Phase-Spread is a
self-stabilizing Majority Broadcast protocol which
converges in Õ(logn) rounds w.h.p using 3-bit
messages, provided majority is supported by
( 1

2 + ε)-fraction of source agents.

Theorem (Clock Syncronization). Syn-Clock
is a self-stabilizing clock synchronization protocol
which synchronizes a clock modulo T in
Õ(logn log T ) rounds w.h.p. using 3-bit messages.



Conclusions

Biology demands the study of systems
in-between interacting-particle systems
and human-made ones.

TCS can analyze natural algorithms,
helping to understand principles behind
the systems’ ability to compute in
simple chaotic ways.
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