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What can Simple Systems do?

Schools of fish N i
[Sumpter et al. ’08] ik

Insects colonies

[Franks et al. ’02] é’r

Flocks of birds

S [Ben-Shahar et al. ’10]

Biological Systems
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Examples of Natural Algorithms

How birds of flocks synchronize
their flight [Chazelle "09]
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Examples of Natural Algorithms

How birds of flocks synchronize
their flight [Chazelle "09]

How are sensory
organ precursor
cells selected in a

fly’s nervous system |
[AABHBB ’11]

How do ants

How Physarum polycephalum decide where
finds shortest paths [BBDKM ’14]  to relocate
their nest?

[ GMRL ’15]

.. How ants perform collective
A | navigattion [FHBGKKF ’16]
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Animal communication:

i Chaotic
i Anonymous
» Parsimonious

PULL(h,¢) model
[Demers ’88]: at each
round each agent can
observe h other agents
chosen independently and
uniformly at random, and
shows £ bits to her
observers.
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Animal communication:
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Dynamics

— Very simple distributed algorithms: For every graph

G = (V,F), agent u € V and round ¢ € N, states are updated

2 according to fixed rule f(o(u),o(5)) of current state o(u) and

= symmetric function of states o(5) of a random sample S of
neighbors.
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Dynamics

— Very simple distributed algorithms: For every graph

g G = (V,F), agent v € V and round ¢ € N, states are updated
2 according to fixed rule f(o(u),o(5)) of current state o(u) and
£ symmetric function of states o(S) of a random sample S of
neighbors.

Two examples: ’

o 3-Majority dynamics O
e Undecided-state dynamics \ O




The Power of Dynamics: Plurality Consensus

3-Majority dynamics |[SPAA 14, SODA L_\ é

'16]. If plurality has bias O(y/knlogn),

converges to it in O(klogn) rounds \‘
w.h.p., even against o(4/n/k)-bounded ® O

adversary. Without bias, converges in
poly(k). h-majority converges in Q(k/h?). ® O



The Power of Dynamics: Plurality Consensus

3-Majority dynamics |[SPAA 14, SODA L_\ é
'16]. If plurality has bias O(y/knlogn), \

converges to it in O(klogn) rounds

w.h.p., even against o(4/n/k)-bounded ® O
adversary. Without bias, converges in
poly(k). h-majority converges in Q(k/h?). ® O

majority /second-majority (Cmaq;/ CQndmaJ)
is at least 1 + €, System converges to
plurality within ©(md(c)) rounds w.h.p. O

O O

O
Undecided-State dynamics [SODA ’15]. If g JP



A Global Measure of Bias

< md “Teen | < k

Undecided-State dynamics [SODA 15|, If
majority /second-majority (¢ma;/Candmq;) is at least 1 4,
system converges to plurality within ©(md(c)) rounds w.h.p.
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Applications: (Self-stabilizing) Broadcast Problem

Sources’ bits (and other agents’ states) may change in
response to external environment.

More generally, system is initialized in arbitrary state
(self-stabilization).
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Selt-Stab.) Broadcast vs Synchronization

Self-stablizing algorithms converge from
any nitial configuration
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Self-Stabilizing Clock Sync. in the PULL Model
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log T’ bits. Binary broadcast can be done in 1-bit PULL...
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2-Majority dynamics [Doerr et al. "11]. Converge to
consensus in O(logn) rounds with high probability.
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The Message Reduction Lemma

bitwise-independent P
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from different agents
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Results: 3 Bits suffice...

Theorem (Clock Syncronization). SYN-CLOCK
is a self-stabilizing clock synchronization protocol
which synchronizes a clock modulo T in

~

O(lognlogT) rounds w.h.p. using 3-bit messages.

Corollary (Self-stabilizing Majority
Broadcast). SYN-PHASE-SPREAD is a
self-stabilizing Majority Broadcast protocol which
converges in O(logn) rounds w.h.p using 3-bit
messages, provided majority is supported by

(2 4 €)-fraction of source agents.



Conclusions

Biology demands the study of systems
in-between interacting-particle systems
and human-made ones.

TCS can analyze natural algorithms,
helping to understand principles behind
the systems’ ability to compute in
simple chaotic ways.
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