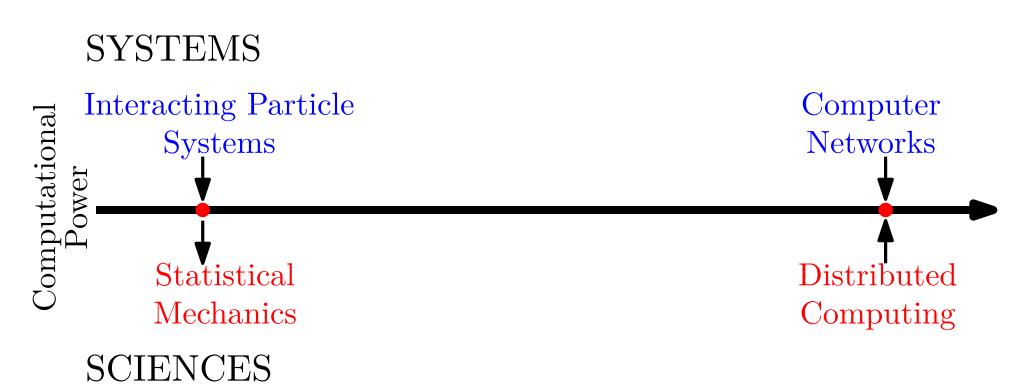
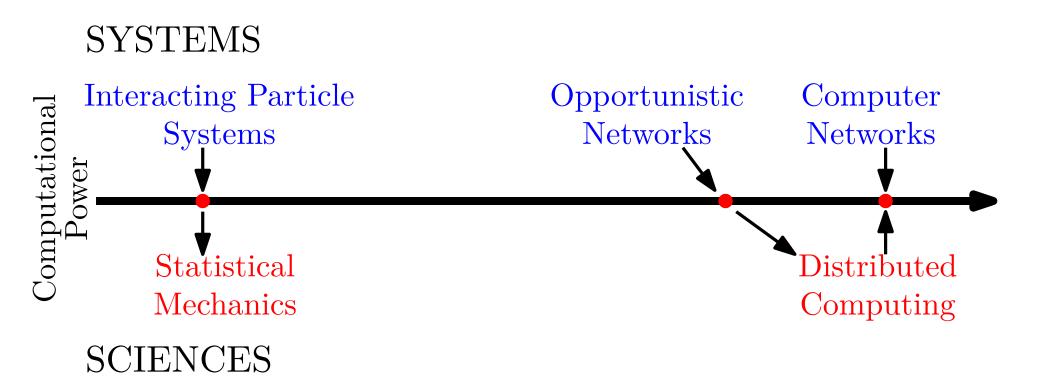
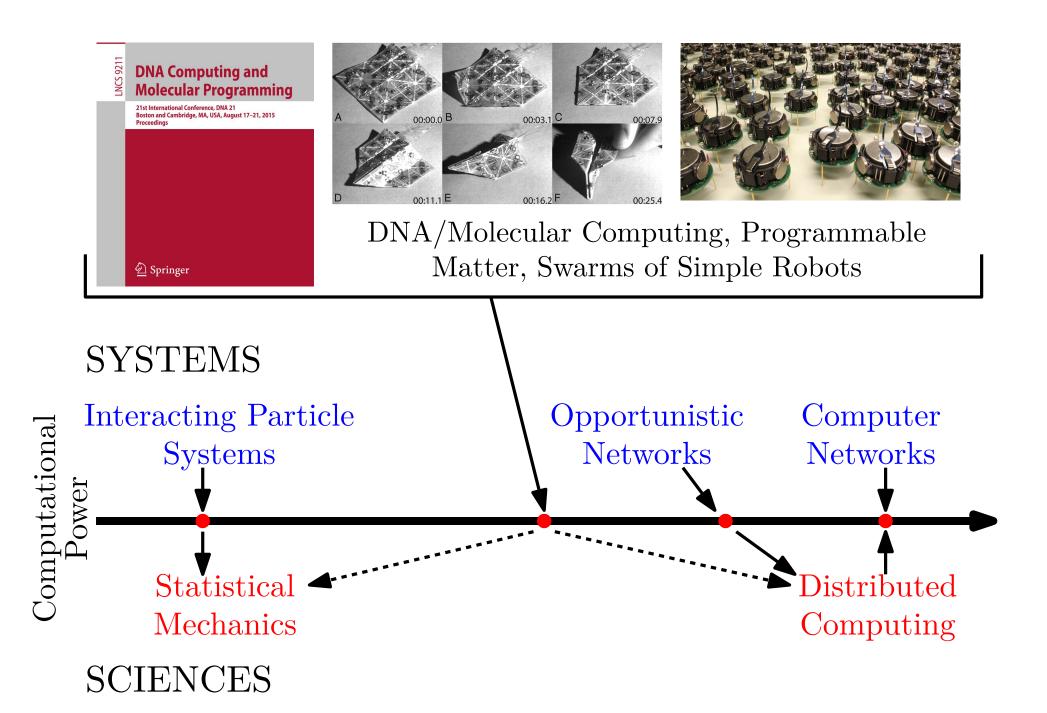
What can be Computed in a Simple Chaotic Way?

Emanuele Natale



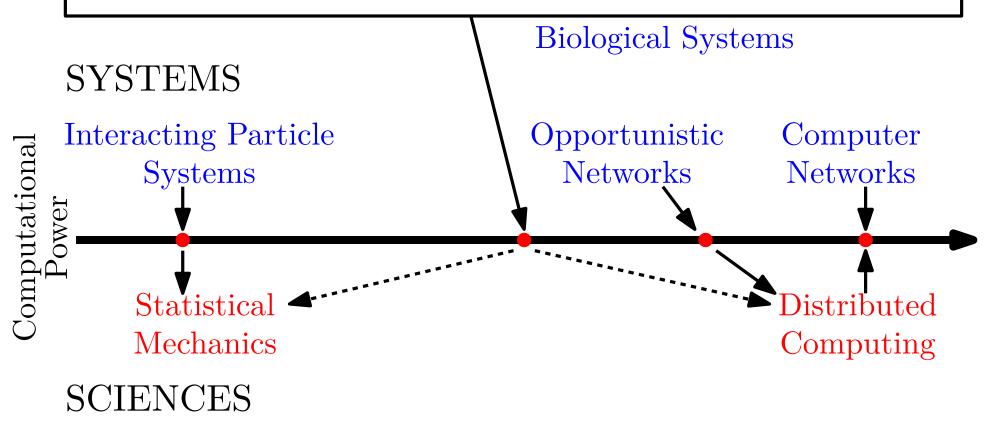




Schools of fish [Sumpter et al. '08]

Insects colonies [Franks et al. '02]

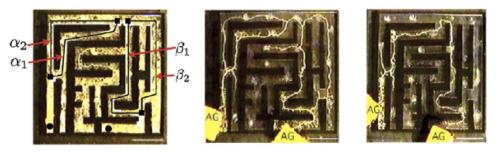
Flocks of birds Ben-Shahar et al. '10]



How birds of flocks synchronize their flight [Chazelle '09]

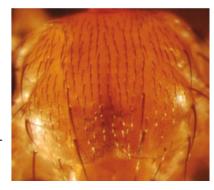
How birds of flocks synchronize their flight [Chazelle '09]

> How are sensory organ precursor cells selected in a fly's nervous system [AABHBB '11]

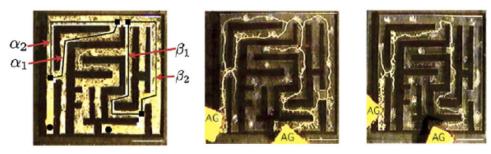


How birds of flocks synchronize their flight [Chazelle '09]

> How are sensory organ precursor cells selected in a fly's nervous system [AABHBB '11]



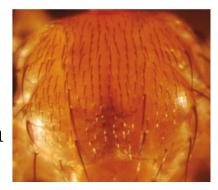
How Physarum polycephalum finds shortest paths [BBDKM '14]



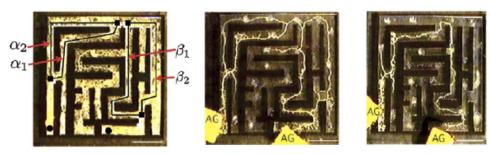
How Physarum polycephalum finds shortest paths [BBDKM '14]

How birds of flocks synchronize their flight [Chazelle '09]

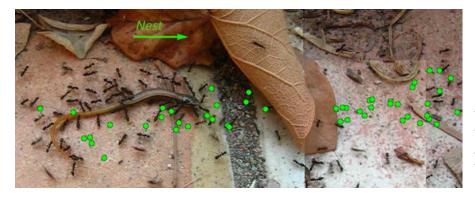
> How are sensory organ precursor cells selected in a fly's nervous system [AABHBB '11]



How do ants decide where to relocate their nest? [GMRL '15]

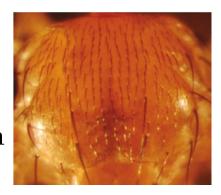


How Physarum polycephalum finds shortest paths [BBDKM '14]



How birds of flocks synchronize their flight [Chazelle '09]

How are sensory organ precursor cells selected in a fly's nervous system [AABHBB '11]



How do ants decide where to relocate their nest? [GMRL '15]

How ants perform collective navigation [FHBGKKF '16]

Unstructured Communication Models

Animal communication:

- Chaotic
- Anonymous
- Parsimonious

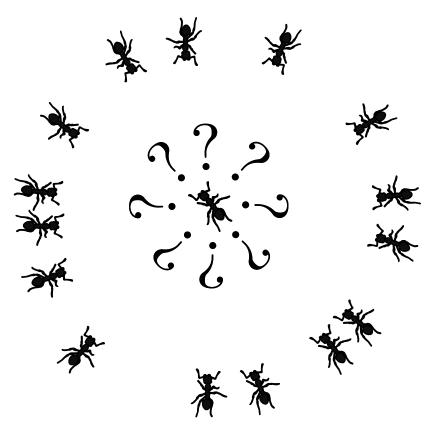
- Uni-directional (Passive/Active)
- Noisy

Unstructured Communication Models

Animal communication:
Chaotic
Anonymous
Parsimonious

 $\mathcal{PULL}(h, \ell)$ model[Demers '88]: at eachround each agent canobserve h other agentschosen independently anduniformly at random, andshows ℓ bits to herobservers.

- Uni-directional (Passive/Active)
- Noisy



Unstructured Communication Models

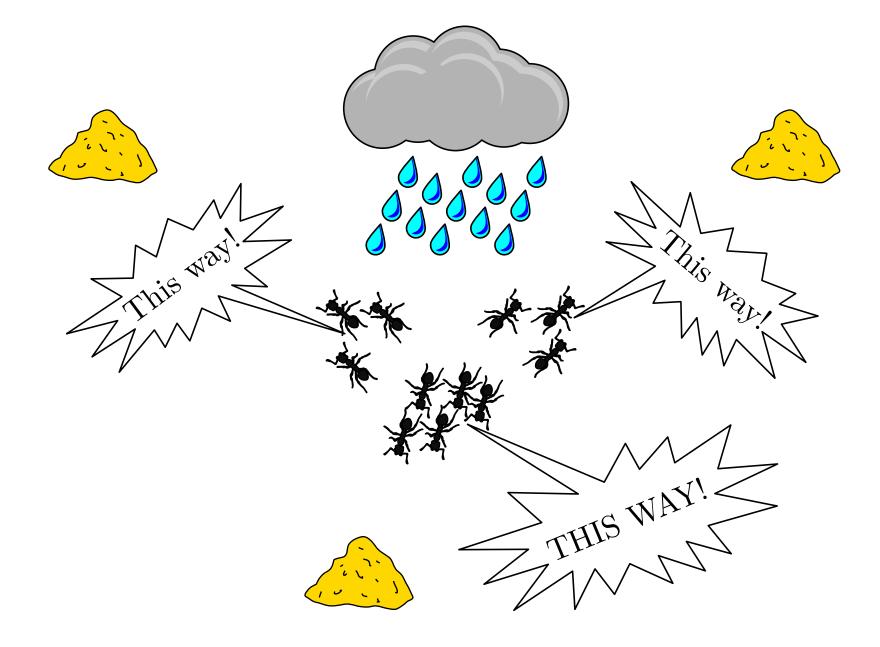
Animal communication:
Chaotic
Anonymous
Parsimonious

 $\mathcal{PULL}(h, \ell)$ model [Demers '88]: at each round each agent can *observe* h other agents chosen independently and uniformly at random, and *shows* ℓ *bits* to her observers.

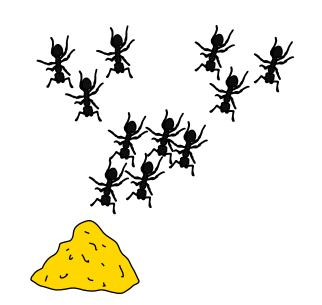
- Uni-directional (Passive/Active)
- Noisy

01001

Natural Algorithms for Plurality Consensus



Natural Algorithms for Plurality Consensus



Dynamics

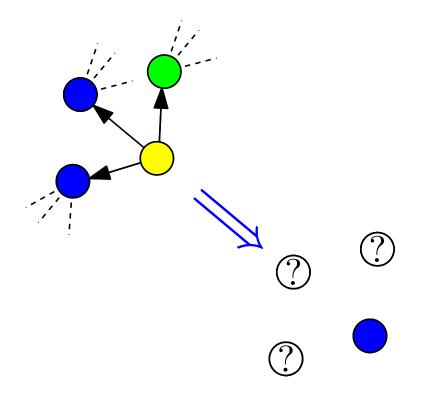
Very simple distributed algorithms: For every graph G = (V, E), agent $u \in V$ and round $t \in \mathbb{N}$, states are updated according to fixed rule $f(\sigma(u), \sigma(S))$ of current state $\sigma(u)$ and symmetric function of states $\sigma(S)$ of a random sample S of neighbors.

Dynamics

Very simple distributed algorithms: For every graph G = (V, E), agent $u \in V$ and round $t \in \mathbb{N}$, states are updated according to fixed rule $f(\sigma(u), \sigma(S))$ of current state $\sigma(u)$ and symmetric function of states $\sigma(S)$ of a random sample S of neighbors.

Two examples:

• 3-Majority dynamics

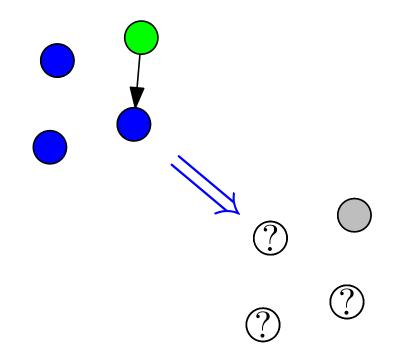


Dynamics

Very simple distributed algorithms: For every graph G = (V, E), agent $u \in V$ and round $t \in \mathbb{N}$, states are updated according to fixed rule $f(\sigma(u), \sigma(S))$ of current state $\sigma(u)$ and symmetric function of states $\sigma(S)$ of a random sample S of neighbors.

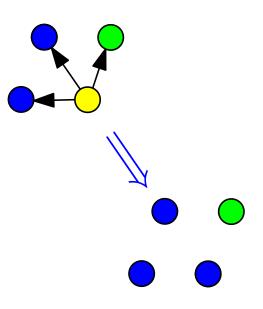
Two examples:

- 3-Majority dynamics
- Undecided-state dynamics



The Power of Dynamics: Plurality Consensus

3-Majority dynamics [SPAA '14, SODA '16]. If plurality has **bias** $O(\sqrt{kn \log n})$, converges to it in $O(k \log n)$ rounds w.h.p., even against $o(\sqrt{n/k})$ -bounded adversary. Without bias, converges in poly(k). h-majority converges in $\Omega(k/h^2)$.

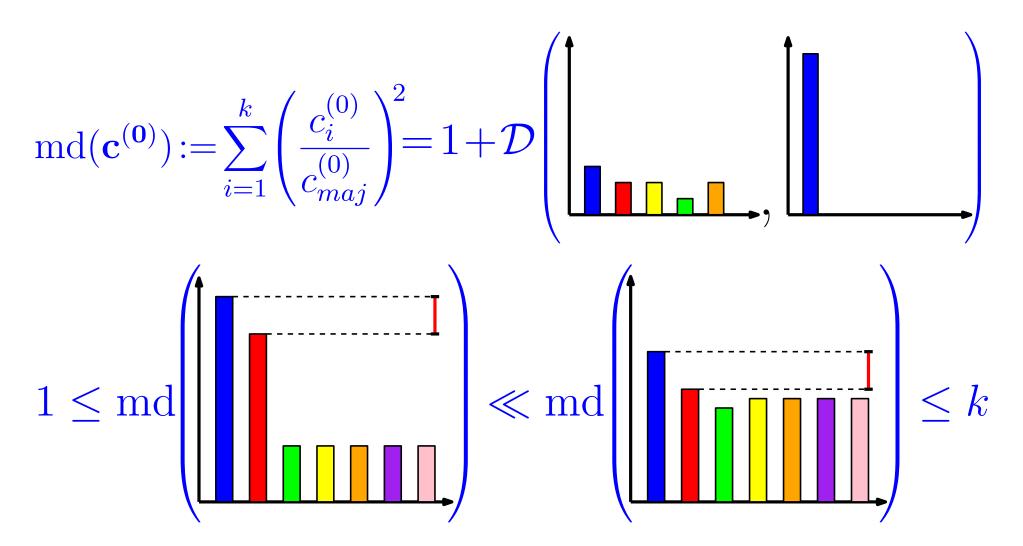


The Power of Dynamics: Plurality Consensus

3-Majority dynamics [SPAA '14, SODA '16]. If plurality has **bias** $O(\sqrt{kn \log n})$, converges to it in $O(k \log n)$ rounds w.h.p., even against $o(\sqrt{n/k})$ -bounded adversary. Without bias, converges in poly(k). h-majority converges in $\Omega(k/h^2)$.

Undecided-State dynamics [SODA '15]. If majority/second-majority $(c_{maj}/c_{2^{nd}maj})$ is at least $1 + \epsilon$, system converges to plurality within $\tilde{\Theta}(\text{md}(\mathbf{c}))$ rounds w.h.p.

A Global Measure of Bias

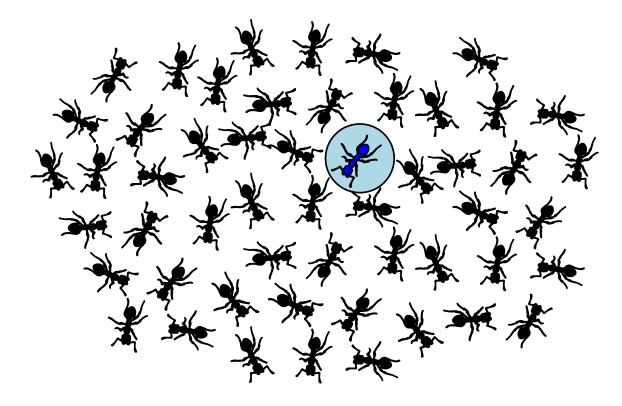


Undecided-State dynamics [SODA '15]. If majority/second-majority $(c_{maj}/c_{2^{nd}maj})$ is at least $1 + \epsilon$, system converges to plurality within $\tilde{\Theta}(\mathrm{md}(\mathbf{c}))$ rounds w.h.p.

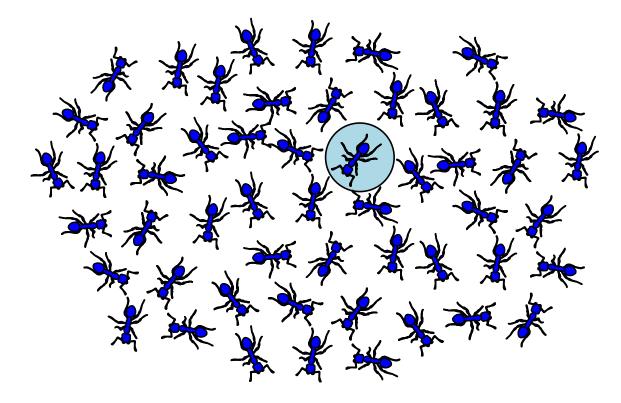
Applications: Broadcast Problem

Applications: Broadcast Problem

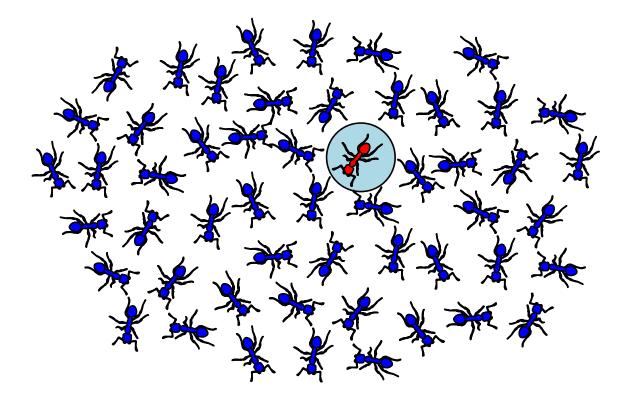
Sources' bits (and other agents' states) may change in response to *external environment*.



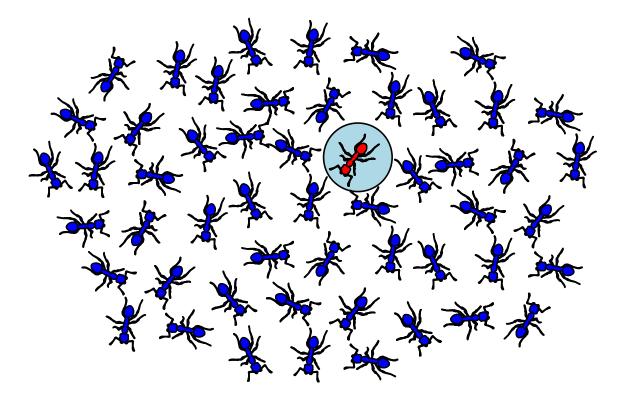
Sources' bits (and other agents' states) may change in response to *external environment*.



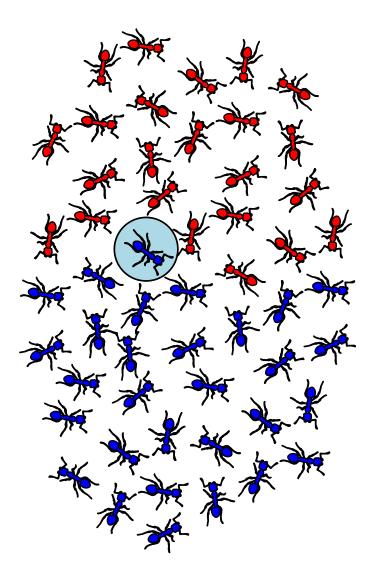
Sources' bits (and other agents' states) may change in response to *external environment*.

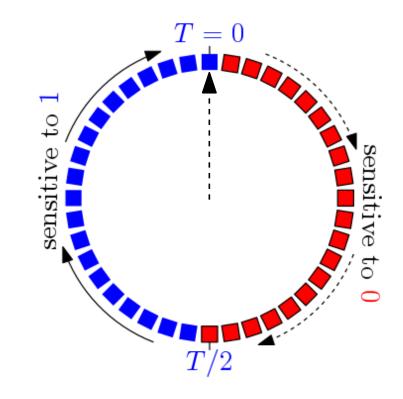


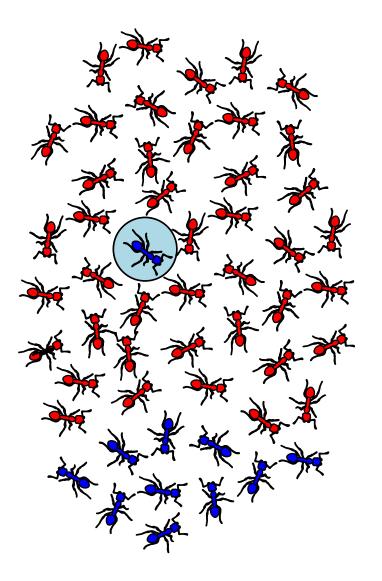
Sources' bits (and other agents' states) may change in response to *external environment*.

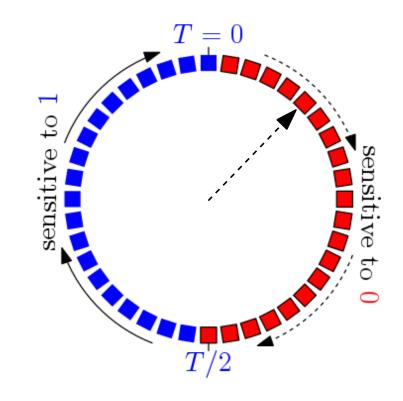


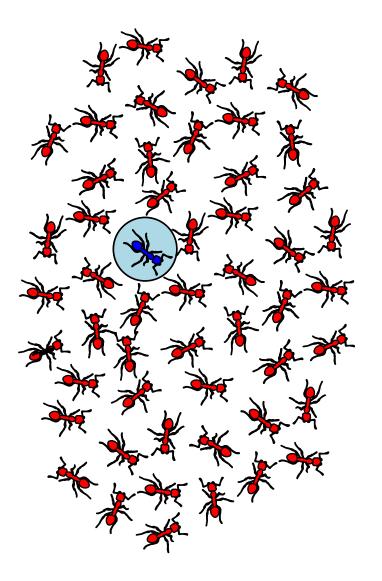
More generally, system is initialized in *arbitrary state* (self-stabilization).

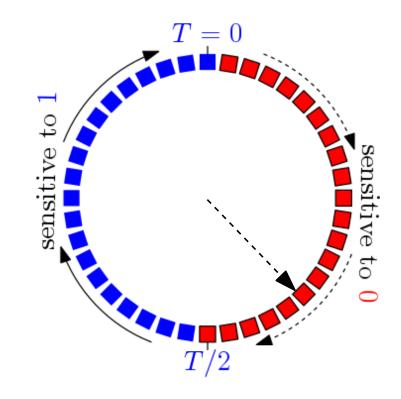


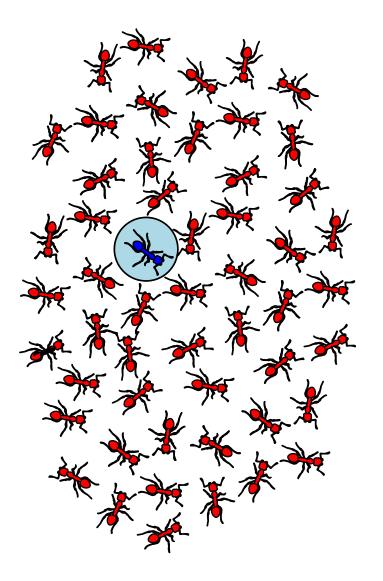


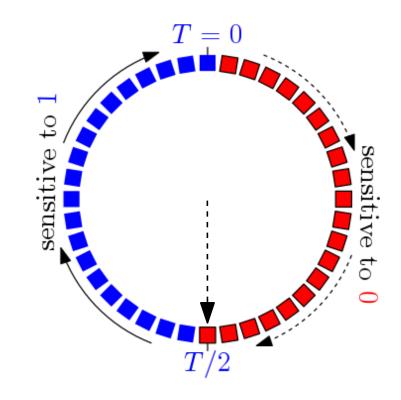


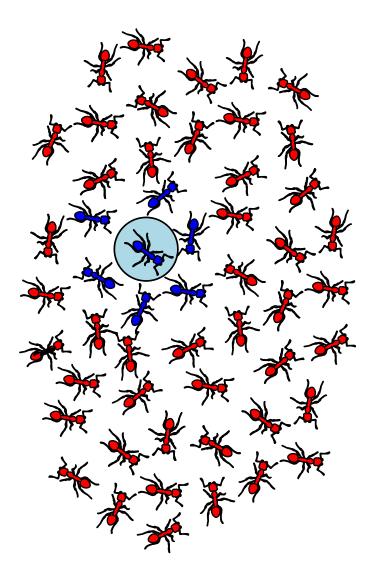


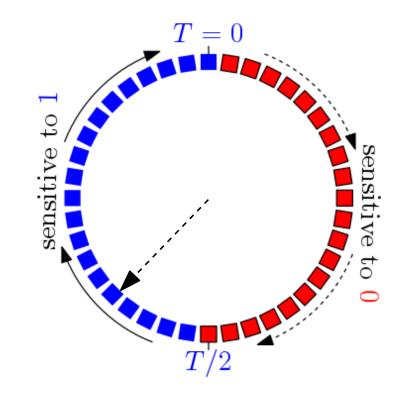


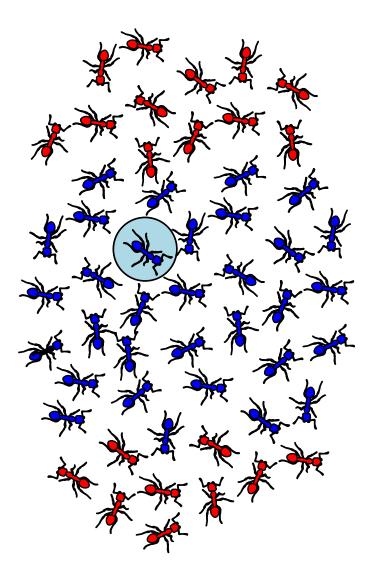


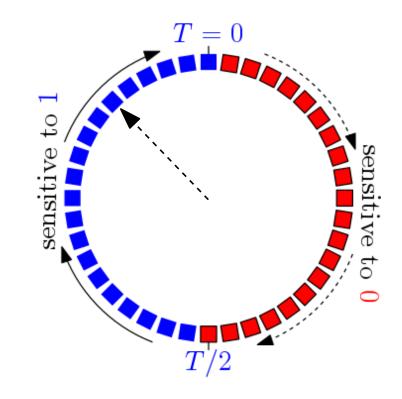


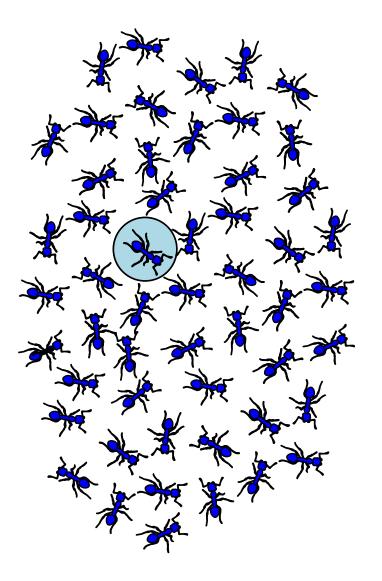


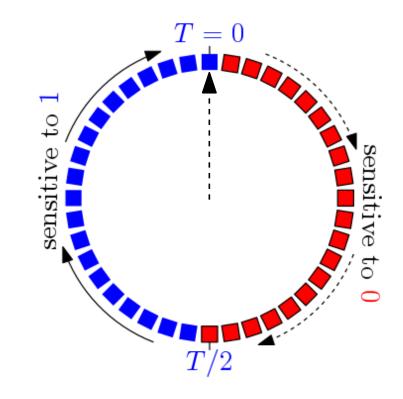




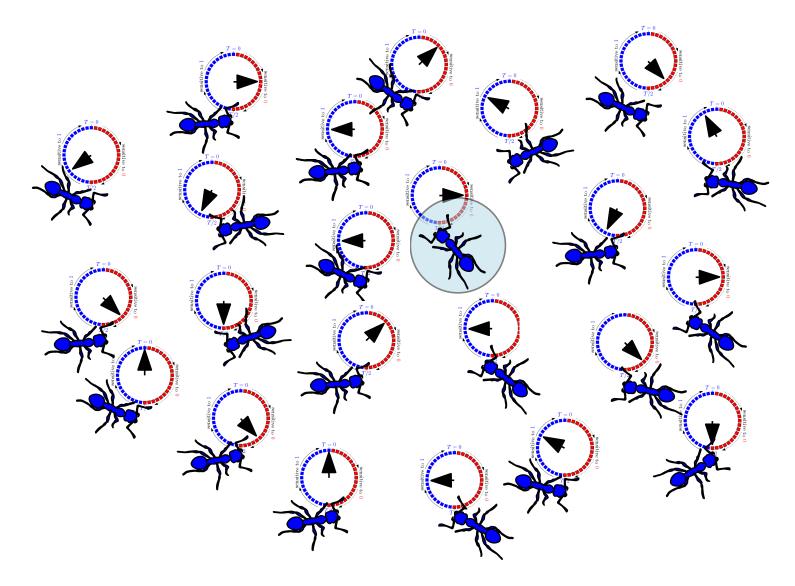


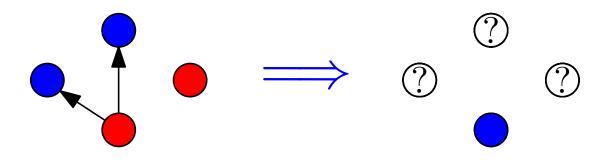




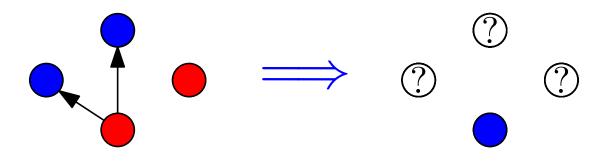


Self-stablizing algorithms converge from any initial configuration

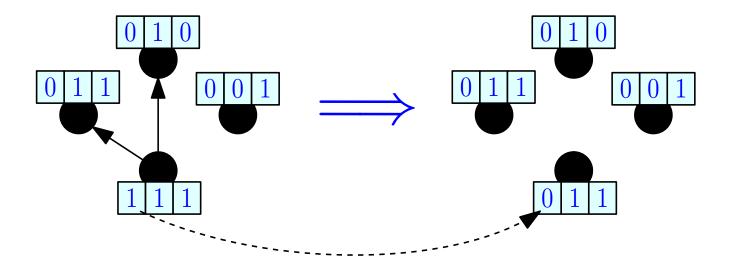


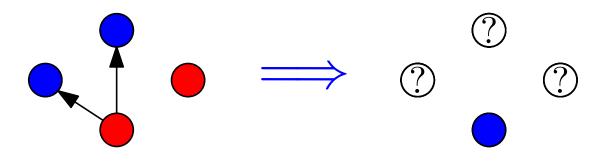


2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.

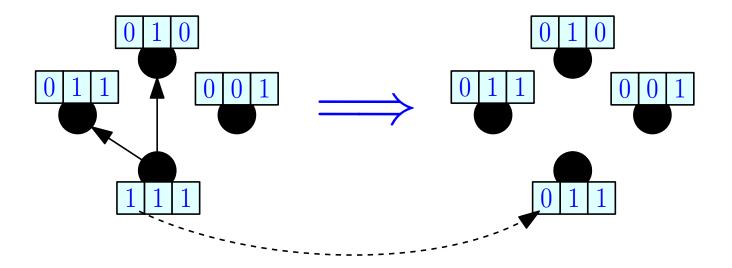


2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.

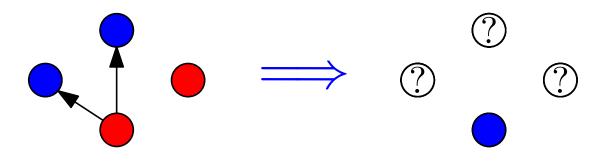




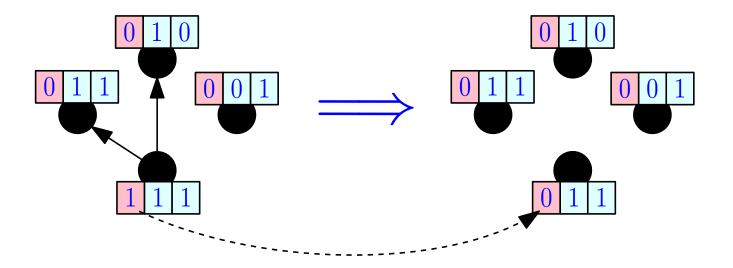
2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.



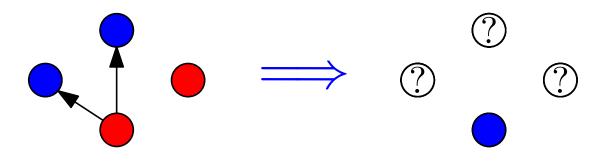
T-clock can be sync. in $\mathcal{O}(\log n \log T)$ rounds w.h.p. using $\log T$ bits. Binary broadcast can be done in 1-bit \mathcal{PULL} ...



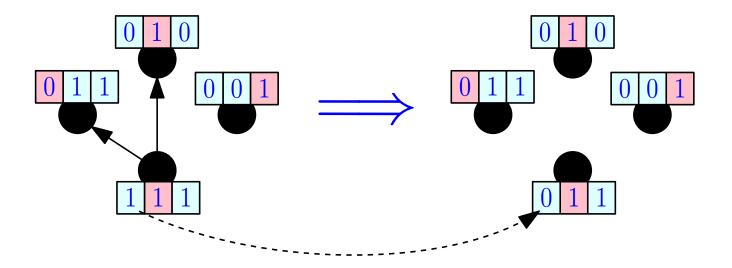
2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.



T-clock can be sync. in $\mathcal{O}(\log n \log T)$ rounds w.h.p. using $\log T$ bits. Binary broadcast can be done in 1-bit \mathcal{PULL} ...

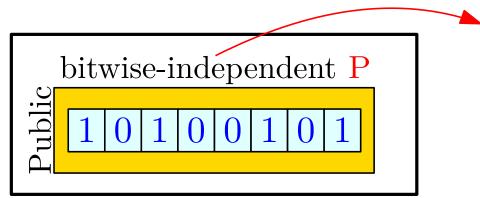


2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.



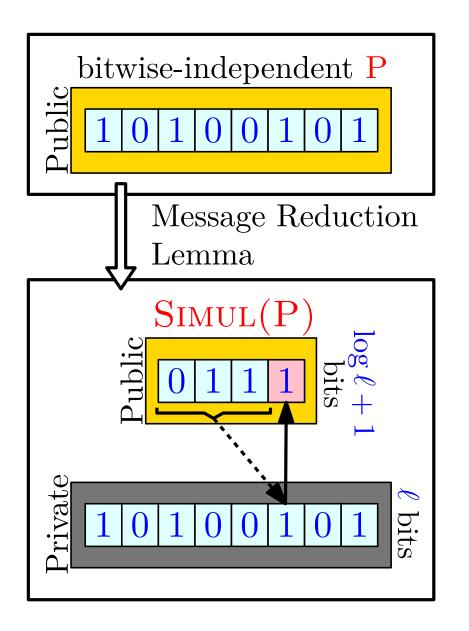
T-clock can be sync. in $\mathcal{O}(\log n \log T)$ rounds w.h.p. using $\log T$ bits. Binary broadcast can be done in 1-bit \mathcal{PULL} ...

The Message Reduction Lemma

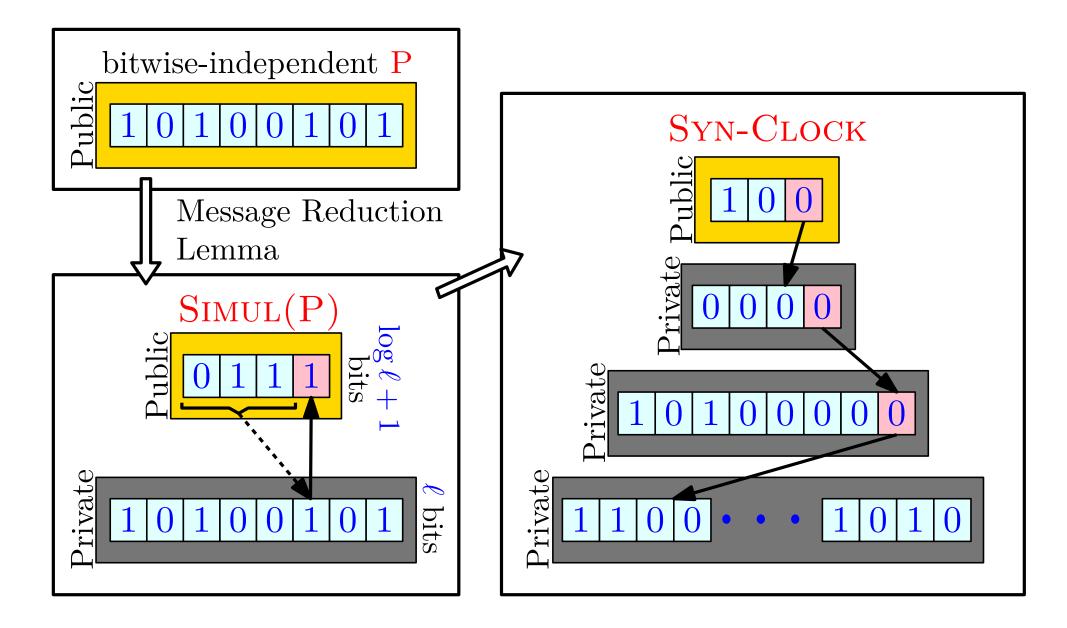


 Parts of message can come from different agents

The Message Reduction Lemma



The Message Reduction Lemma



Results: 3 Bits suffice...

Theorem (Clock Syncronization). SYN-CLOCK is a *self-stabilizing* clock synchronization protocol which synchronizes a clock modulo T in $\tilde{\mathcal{O}}(\log n \log T)$ rounds w.h.p. using **3-bit messages**.

Corollary (Self-stabilizing Majority Broadcast). SYN-PHASE-SPREAD is a self-stabilizing Majority Broadcast protocol which converges in $\tilde{\mathcal{O}}(\log n)$ rounds w.h.p using 3-bit messages, provided majority is supported by $(\frac{1}{2} + \epsilon)$ -fraction of source agents.

Conclusions

Biology demands the study of systems in-between interacting-particle systems and human-made ones.

TCS can analyze natural algorithms, helping to understand principles behind the systems' ability to compute in simple chaotic ways.