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Dynamics

— Very simple distributed algorithms:

For every graph, agent and round, states are updated
according to fixed (random) rule of current state and
= symmetric function of states of neighbors.
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Dynamics

— Very simple distributed algorithms:

For every graph, agent and round, states are updated
S according to fixed (random) rule of current state and
symmetric function of states of neighbors.
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Examples of Dynamics

o

e 3-Median dynamics

e 2-Choice dynamics

e 3-Majority dynamics

e Undecided-state dynamics

o Averaging dynamics O

(asynchronous)
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Some Results on Dynamics

On the complete graph:

3-Median dynamics [DGMSS ’11]|. Converge to O(y/nlogn)
approximation of median of system in O(logn) rounds w.h.p.

3-Majority dynamics [BCNPS 14, BCNPT ’16, BCEKMN ’17].
If plurality has bias O(y/knlogn), converges to it in O(klogn)
rounds w.h.p., even against o(y/n/k)-bounded adversary.
Without bias, converges in poly(k). When £ is large, polynomial
separation w.r.t. 2-Choice.

Undecided-State dynamics [BCNPST "15]. If
majority /second-majority is at least 1 + €, system converges to

~

plurality within ©(3, (2400 )2) rounds w.h.p.,
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Dynamics can solve Consensus, Median, Majority, in a robust way,
but this is trivial in centralized setting.. Can they solve a
problem non-trivial in centralized setting?



Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg gnég E(S,V —9).
|S|=n

(GJS '76]: Min. Bisection is NP-Complete.




Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find
S = arg min E(S,V —95).
S
(GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two “communities” of
equal size V7 and V5, each edge inside a community
included with probability p, each edge across
communities included with probability ¢ < p.




Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg gnég E(S,V —9).
|S|=n

(GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two “communities” of

equal size V7 and V5, each edge inside a community ﬁ" .q.- “ Z‘?'
included with probability p, each edge across ‘a s
communities included with probability ¢ < p.

Reconstruction problem. Given Q{l
graph generated by SBM, find C%)’
original partition. Z/é



Community Detection

Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg gnég E(S,V —9).
|S|=n

(GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two “communities” of

. . . @... s
equal size V7 and V5, each edge inside a community D ) ..q.- &7
included with probability p, each edge across " s
communities included with probability ¢ < p.

Reconstruction problem. Given
graph generated by SBM, find
original partition.

Regular SBM [BDGHT °’15|. Graph
induced by communities are p5-regular

random, graph induced by cut is gn-regular

random. p%—regular . pg.—regular
gn-regular bipartite




The Averaging Dynamics

Asynchronous Averaging Protocol:

At each round a random edge is chosen.

e At the first activation, each node picks at random +1 or —1.

e (Dynamics) At each activation, the nodes averages their values.
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Asynchronous Averaging Protocol:

At each round a random edge is chosen.
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Theorem (Corollary of [BCMNPRT’17(Soon on Arxiv)]).
There exist 7, s.t., if each node labels itself with the sign of the
difference of its value at two activation times 7, and 7o, then with
prob. 1 — ¢, after O.(nlogn + /\%) rounds, we get a correct
reconstruction up to an e-fraction of nodes.
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Al nodes at the same time:
o At t =0, randomly pick
value (") € {41,-1}.

e Then, at each round
1. Set value z*) to lazy
average of neighbors,
2. Set label to blue if
) < £z(t=1) red
otherwise.
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E|Averaging Dynamics|”

Al nodes at the same time:

e At t =0, randomly pick
’ Lab l
value () € {41,-1}. a y - - - - - -

e Then, at each round -|—1
1. Set value z(*) to lazy /00%0‘
average of neighbors

2. Set label to blue if
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Community Detection via (Parallel) Averaging

[BCNPT ’17](Informal). G = (V1| Vs, E) s

i) x = 1y, — 1y, close to right-eigenvector of
eigenvalue Ay of transition matrix of GG, and

ii) gap between Ay and A3 sufficiently large, then
Averaging (approximately) identifies (V7, V5).
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[BCNPT ’17](Informal). G = (V1| Vs, E) s

i) x = 1y, — 1y, close to right-eigenvector of
eigenvalue Ay of transition matrix of GG, and

ii) gap between Ay and A3 sufficiently large, then
Averaging (approximately) identifies (V7, V5).

Averaging 2 X(t) — P . X(t_l) — Pt . X(O)
is a linear x() — [0
dvnamics ® P transition matrix

Y @ of lazy random walk
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P symmetric = orthonormal eigenvectors v, ..., v,, and
real eigenvalues A, ..., \,.

x(®) = Pt .x(0) = 3~ \(vTx )y,

Vi = %]1 — ﬁ(l,

Regular SBM — P\/_X (a=b). \/1—X

, 1) with (largest) eigenvalue 1

a-+b
......... oy (1) (1)
() ;
S| e e 1| a—b |1
at+b| ... L | =1~ a+b | =1
S ;...aﬂy’s... f f
\ ......... E ......... ) K_lj K_lj



Analysis on Regular SBM

P symmetric = orthonormal eigenvectors v, ..., v,, and
real eigenvalues A, ..., \,.
x(®) = Pt.x©0) — 3 A\(yTxO)y,
Vi = ﬁ]l = ﬁ(l, ..., 1) with (largest) eigenvalue 1
Regular SBM — P% — (Z—Jrg) \/1—X
W.h.p. A\3(1+9) < Z—:Lg = A9, then
1 a—b
w:_lT@l,( ) T+ (0) (t)
x = —(1Tx™) ) XX T)xte
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Analysis on Regular SBM
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. Analyzing LPAs

Open Problem

of Label Propagation Algorithms

tially sample a random color, then
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Thank you!
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