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Schools of fish
[SKJCW’08]

Insects colonies
[FPMBS’02]

Flocks of birds
[BDDS’14]

Biological Systems
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Dynamics

Very simple distributed algorithms:
For every graph, agent and round, states are updated
according to fixed (random) rule of current state and
symmetric function of states of neighbors.(in

fo
rm

al
)

Examples of Dynamics

• 3-Median dynamics
• 2-Choice dynamics

• Undecided-state dynamics
• Averaging dynamics

(asynchronous)

=⇒

• 3-Majority dynamics



Some Results on Dynamics

3-Median dynamics [DGMSS ’11]. Converge to O(
√
n logn)

approximation of median of system in O(logn) rounds w.h.p.

3-Majority dynamics [BCNPS ’14, BCNPT ’16, BCEKMN ’17].
If plurality has bias O(

√
kn logn), converges to it in O(k logn)

rounds w.h.p., even against o(
√
n/k)-bounded adversary.

Without bias, converges in poly(k). When k is large, polynomial
separation w.r.t. 2-Choice.

Undecided-State dynamics [BCNPST ’15]. If
majority/second-majority is at least 1 + ε, system converges to
plurality within Θ̃(

∑
i(

#{majority nodes}
#{i−colored nodes} )2) rounds w.h.p.,

On the complete graph:
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majority/second-majority is at least 1 + ε, system converges to
plurality within Θ̃(

∑
i(

#{majority nodes}
#{i−colored nodes} )2) rounds w.h.p.,

Dynamics can solve Consensus, Median, Majority, in a robust way,
but this is trivial in centralized setting.. Can they solve a
problem non-trivial in centralized setting?

On the complete graph:



Community Detection
Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg min
S⊂V
|S|=n

E(S, V − S).

[GJS ’76]: Min. Bisection is NP-Complete.
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Community Detection
Min. Bisection Problem.
Given a graph G with 2n nodes. Find

S = arg min
S⊂V
|S|=n

E(S, V − S).

[GJS ’76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two “communities” of
equal size V1 and V2, each edge inside a community
included with probability p, each edge across
communities included with probability q < p.

qp p

Reconstruction problem. Given
graph generated by SBM, find
original partition. ∼

pn2 -regular pn2 -regular
qn-regular bipartite

Regular SBM [BDGHT ’15]. Graph
induced by communities are pn2 -regular
random, graph induced by cut is qn-regular
random.



The Averaging Dynamics
Asynchronous Averaging Protocol:
At each round a random edge is chosen.
• At the first activation, each node picks at random +1 or −1.
• (Dynamics) At each activation, the nodes averages their values.
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The Averaging Dynamics
Asynchronous Averaging Protocol:
At each round a random edge is chosen.
• At the first activation, each node picks at random +1 or −1.
• (Dynamics) At each activation, the nodes averages their values.

Theorem (Corollary of [BCMNPRT’17(Soon on Arxiv)]).
There exist τ1, τ2 s.t., if each node labels itself with the sign of the
difference of its value at two activation times τ1 and τ2, then with
prob. 1− ε, after Oε(n logn+ n

λ2
) rounds, we get a correct

reconstruction up to an ε-fraction of nodes.



“E[Averaging Dynamics]”

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set value x(t) to lazy
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.
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Community Detection via (Parallel) Averaging

[BCNPT ’17](Informal). G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of
eigenvalue λ2 of transition matrix of G, and
ii) gap between λ2 and λ3 sufficiently large, then
Averaging (approximately) identifies (V1, V2).



Community Detection via (Parallel) Averaging

[BCNPT ’17](Informal). G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of
eigenvalue λ2 of transition matrix of G, and
ii) gap between λ2 and λ3 sufficiently large, then
Averaging (approximately) identifies (V1, V2).

P transition matrix
of lazy random walk

Averaging
is a linear
dynamics

x(t) =
x(t) = P · x(t−1) = P t · x(0)

( )
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P symmetric =⇒ orthonormal eigenvectors v1, ...,vn and
real eigenvalues λ1, ..., λn.

v1 = 1√
n
1 = 1√

n
(1, ..., 1) with (largest) eigenvalue 1

Regular SBM =⇒ P 1√
n
χ = (a−ba+b ) ·

1√
n
χ


· · · · · · · · · · · · · · · · · ·
· · · a “1”s · · · · · · b “1”s · · ·
· · · · · · · · · · · · · · · · · ·
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x(t) = 1
n

(1ᵀx(0))1 +
( a− b
a+ b︸ ︷︷ ︸
=λ2

)t 1
n

(χᵀx(0))χ+ e(t)

x(t) − x(t−1) = (χᵀx(0))λt−1
2 (λ2 − 1)χ + e(t) − e(t−1)︸ ︷︷ ︸

o(λt
2) if t=Ω(logn)

sign(x(t)(u)− x(t−1)(u))
∝ sign(χ(u))



Open Problem: Analyzing LPAs

Averagins is a “linearization” of Label Propagation Algorithms:
• Each node initially sample a random color, then
• at each round, each node switch to the majority label of a
sample of neighbors.



Thank you!
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