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How Physarum polycephalum
finds shortest paths [BBDKM ’14]

How birds of flocks synchronize
their flight [Chazelle ’09]

How are sensory
organ precursor
cells selected in a
fly’s nervous system
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How ants perform collective
navigattion [FHBGKKF ’16]

How do ants
decide where
to relocate
their nest?
[GMRL ’15]
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Ants are Cool!

When army ants need to
cross a large gap, they
simply build a bridge - with
their own bodies. Linking
together, the ants can move
their living bridge from its
original point, allowing
them to cross gaps and
create shortcuts across
rainforests in Central and
South America.

Ants invented architectures

One question that I
wondered about was why the
ant trails look so straight and
nice. The ants look as if they
know what they’re doing, as
if they have a good sense of
geometry. Yet the
experiments that I did to try
to demonstrate their sense of
geometry didn’t work. Many
years later, when I was at
Caltech . . .

Ants puzzled Feynman
And more...

Have a look at
the many
books (e.g.
Hölldobler),
or just
Youtube.
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Density Estimation Problem

A graph (say a grid) of
size
√
A×
√
A, n ants.

Each ant wants to learn
the density d = n/A.

Density estimation in ants: quorum sensing during hause hunting
(temnothorax), appraisal of enemy colony strength (azteca), task
allocation.

How they do it? They estimate frequency of encounters!
Higher density =⇒ higher bumping!

Applications: size estimation for social networks, random-walk based
sampling for sensor networks, density estimation for robot swarms.



Model Definition

• Underlying graph G (2-D torus).
• Each of the n ants is initially placed on a random node,

independently from others.
• Discrete parallel time.
• At each round, each ant moves to a neighboring node chosen

uniformaly at random (simple random walk).
• Only kind of interaction among ants is number of collisions
d̃ =

∑t
r=1 cj(r): an ant j count how many ants on her node at

each time (no other info).
• The estimator is d̃ = 1
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• Underlying graph G (2-D torus).
• Each of the n ants is initially placed on a random node,

independently from others.
• Discrete parallel time.
• At each round, each ant moves to a neighboring node chosen

uniformaly at random (simple random walk).
• Only kind of interaction among ants is number of collisions
d̃ =

∑t
r=1 cj(r): an ant j count how many ants on her node at

each time (no other info).
• The estimator is d̃ = 1

t

∑t
r=1 cj(r).

Lemma. E[d̃] = d.

Goal. If t ≥ Θ(?) then Pr(|d̃− d| > εd) ≤ δ.

The mathematical challenge: after two ants meet, they are more
likely to meet again. cj(r′) and

cj(r′′) are not
independent!
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=⇒ cj(r′) and cj(r′′) are independent!
At each round each ants position is i.u.a.r.

(A) Chernoff bound. Let X1, . . . , XN be
independent 0-1 random variables with
Pr(Xi = 1) = p, then for any ε ∈ (0, 1),
Pr(|

∑
iXi −Np| > εNp) ≤ e− ε

2
3 Np.

N = tn, Xj,r = cj(r), p = 1/A, hence
Pr(|d̃− d| > εd) ≤ e− ε

2
3 td ≤ δ =⇒ t = 3 log 1

δ /(dε2).
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ABC of Concentration Inequalities

A mathematician tosses n coins:
“The outcome is Binomial(n, 1/2).”

A computer scientist tosses n coins:
“The outcome is n

2 ±
√
n logn with high probability.”

Markov inequality. X nonnegative r.v., then Pr(X ≥ t) ≤ E[X]/t.

For any non-decreasing function ψ,
Pr(X ≥ t) = Pr(ψ(X) ≥ ψ(t)) ≤ E[ψ(X)]/ψ(t).

X ← |X − EX| and ψ(x) = x2 =⇒ Chebyshev inequality.

X ←
∑
iXi indip. and ψ(X) = e−λX =⇒ Chernoff bounds.
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Let g(y) = 2
∑∞
k=2

yk−2

k! = 2(ey−1−y)
y2 .

It holds g(0) = 1, g(y) ≤ 1 for y ≥ 0,
g(y) = 2

∑∞
k=2

yk−2

k! ≤
∑∞
k=2

yk−2

3k−2 = 1
1− y3

for y < 3 since k! ≥ 2 · 3k−2.
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A General Chernoff bound

We have

E
(
eλ
∑

i
X
)

=
∏
i

E
(
eλXi

)
=
∏
i

E

( ∞∑
k=0

λkXk
i

k!

)

=
∏
i

E
(

1 + λE (Xi) + 1
2λ

2X2
i g (λXi)

)
≤
∏
i

(
1 + λE (Xi) + 1

2λ
2E
(
X2
i

)
g (λM)

)
≤
∏
i

eλE(Xi)+ 1
2λ

2E(X2
i )g(λM)

= eλE(
∑

i
Xi)+ 1

2λ
2g(λM)

∑
i
E(X2

i ).

Hence, for λ satisfying λM < 3, we have...



A General Chernoff bound

Pr
(∑

i

Xi ≥ E

(∑
i

Xi

)
+ ∆

)
= Pr

(
eλX ≥ eλE(

∑
i
Xi)+λ∆

)
≤ e−λE(

∑
i
Xi)−λ∆E

(
eλX

)
≤ e−λ∆+ 1

2λ
2g(λM)

∑
i
E(X2

i )

≤ e−λ∆+ 1
2λ

2

∑
i
E(X2

i )
1−λM/3 .

Choosing λ = ∆∑
i
E(X2

i )+M∆/3
, we have λM < 3 and

Pr
(∑

i

Xi ≥ E

(∑
i

Xi

)
+ ∆

)
≤ e−λ∆+ 1

2λ
2

∑
i
E(X2

i )
1−λM/3

≤ e
− ∆2

2(
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i
E(X2

i )+M∆/3) �



Main Result

Theorem. After running for t rounds, t ≤ A, Algorithm 1 returns d̃
such that, for any δ > 0, with prob 1− δ, δd ∈ [(1− ε)d, (1 + ε)d] for
ε =

√
log 1

δ log t
td . In other words, for any ε, δ ∈ (0, 1), if

t = Θ( log 1
δ log log 1

δ log 1
dε

dε2 ), d̃ is a (1± ε) multiplicative estimate of d
with probability 1− δ.

Algorithm 1. Encounter Rate-Based Density Estimator

input: runtime t
c := 0
for r = 1, ..., t do
position = position + rand{(0, 1), (0,−1), (1, 0), (−1, 0)}
c := c+count(position)
end for
return d̃ = c

t
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walking on a
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m+1 ) +O( 1

A ).



Proof Ingredients of Theorem 1

Re-collision Lemma. Consider two agents a1 and a2 randomly
walking on a

√
A×
√
A torus. If a1 and a2 collide at time r, the prob.

that they collide again in round m+ r is Θ( 1
m+1 ) +O( 1

A ).

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).



Proof Ingredients of Theorem 1

Re-collision Lemma. Consider two agents a1 and a2 randomly
walking on a

√
A×
√
A torus. If a1 and a2 collide at time r, the prob.

that they collide again in round m+ r is Θ( 1
m+1 ) +O( 1

A ).

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − j . For

all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).



Proof Ingredients of Theorem 1

Re-collision Lemma. Consider two agents a1 and a2 randomly
walking on a

√
A×
√
A torus. If a1 and a2 collide at time r, the prob.

that they collide again in round m+ r is Θ( 1
m+1 ) +O( 1

A ).

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − j . For

all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).

Bernstein Inequality. Let X1, ..., Xn be independent random
variables such that

∑
i E[X2

i ] ≤ ν and for each k ≥ 3,∑
i E[max{0, Xi}k] ≤ k!

2 νc
k−2. Then

Pr(
∑
iXi −

∑
i EXi ≥ t) ≤ e−t

2/2(ν+ct).



Proof Ingredients of Theorem 1

Re-collision Lemma. Consider two agents a1 and a2 randomly
walking on a

√
A×
√
A torus. If a1 and a2 collide at time r, the prob.

that they collide again in round m+ r is Θ( 1
m+1 ) +O( 1

A ).

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − j . For

all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).

Remark. Proofs can be revisited to estimate probability that single
random walk return on a given node (equalization).

Bernstein Inequality. Let X1, ..., Xn be independent random
variables such that

∑
i E[X2
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2 νc
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Two random walkers, a1 and a2.
Let Mx and My be the steps on x and y direction (Mx +My = 2m).
Let C =“they collide again”, and Cx, and Cy, the event that they end
with same x, and y.
Pr(C |Mx = mx,My = my) = Pr(Cx |Mx = mx) Pr(Cy |My = my).

Wlog, we look at Cx.
Let C1

x and C2
x be the events “same x without displacement” and “same

x with displacement” (displacement=wrapping around torus), so
Pr(Cx |Mx = mx) = Pr(C1

x |Mx = mx) + Pr(C2
x |Mx = mx).

The first summand means that the random walk comes back to the
origin: Pr(C1

x |Mx = mx) =
(
mx
mx/2

)
( 1

2 )mx = mx!
((mx/2)!)2 ( 1

2 )mx .

Re-collision Lemma. Consider two agents a1 and a2 randomly
walking on a

√
A×
√
A torus. If a1 and a2 collide at time r, the prob.

that they collide again in round m+ r is Θ( 1
m+1 ) +O( 1

A ).
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x |Mx = mx) = Θ(1/

√
mx + 1).
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Proof of Re-collision Lemma

Assuming mx even and using Stirling n! =
√

2πn(ne )n(1 +O( 1
n )), we

get Pr(C1
x |Mx = mx) = Θ(1/

√
mx + 1).

As for C2
x, Pr(C2

x |Mx = mx) = 2( 1
2 )mx

∑bmx√
A
c

c=1
( mx

(mx−c
√
A)/2

)
.

For i ∈ [1, ...,
√
A− 1],

let Dix =“the walk is i steps clockwise from start after mx steps”. It
holds

Pr[Dix|Mx = mx] =
(

1
2

)mx
·

⌊
mx−i√

A

⌋∑
c=−

⌊
mx+i√

A

⌋
(

mx

mx+i+c
√
A

2

)

≥
(

1
2

)mx
·

−1∑
c=−

⌊
mx+i√

A

⌋
(

mx

mx+i+c
√
A

2

)
=
(

1
2

)mx
·

⌊
mx√
A

⌋∑
c=1

(
mx

mx+i−c
√
A

2

)
.



Proof of Re-collision Lemma

For any i ∈ [1, ...,
√
A− 1], and any c ≥ 1, mx+i−c

√
A

2 is closer to mx
2

than mx−c
√
A

2 is, so (
mx

mx+i−c
√
A

2

)
>

(
mx

mx−c
√
A

2

)

as long as mx+i−c
√
A

2 is an integer. This allows us to lower bound
Pr[Dix|Mx = mx] using Pr

[
C2
x|Mx = mx

]
. Let Ei,c equal 1 if mx+i−c

√
A

2
is an integer and 0 otherwise. Since C2

x and each Dix are disjoint events:

Pr
[
C2
x|Mx = mx

]
+

√
A−1∑
i=1

Pr
[
Dix|Mx = mx

]
≤ 1

Pr
[
C2
x|Mx = mx

]
+
(

1
2

)mx
·

√
A−1∑
i=1


⌊
mx√
A

⌋∑
c=1

(
mx

mx+i−c
√
A

2

) ≤ 1



Proof of Re-collision Lemma

Pr
[
C2
x|Mx = mx

]
+
(

1
2

)mx
·

⌊
mx√
A

⌋∑
c=1

( mx

mx−c
√
A

2

)
·

√
A−1∑
i=1
Ei,c

 ≤ 1

Pr
[
C2
x|Mx = mx

]
·Θ(
√
A) ≤ 1.

The last step follows from combining the last with the fact that∑√A−1
i=1 Ei,c = Θ

(√
A
)

for all c since mx+i−c
√
A

2 is integral for half the
possible i ∈ [1, ...,

√
A− 1]. Rearranging, we have

Pr
[
C2
x|Mx = mx

]
= O

(
1√
A

)
.



Proof of Re-collision Lemma

Combining our bounds for C1
x and C2

x,
Pr [Cx|Mx = mx] = Θ

(
1√

mx+1

)
+O

(
1√
A

)
.



Proof of Re-collision Lemma

Combining our bounds for C1
x and C2

x,
Pr [Cx|Mx = mx] = Θ

(
1√

mx+1

)
+O

(
1√
A

)
.

Identical bounds hold for the y direction and by saparating
horizantal/vertical axis we have:

Pr [C|Mx = mx,My = my] = Θ
(

1√
(mx + 1)(my + 1)

)

+O

(
1√

A(mx + 1)
+ 1√

A(my + 1)

)
+O

(
1
A

)
.



Proof of Re-collision Lemma

Our final step is to remove the conditioning on Mx and My. Since
direction is chosen independently and uniformly at random for each
step, E [M ]x = E [M ]y = m. By a standard Chernoff bound:

Pr[Mx ≤ m/2] ≤ 2e−(1/2)2·m/2 = O

(
1

m+ 1

)
.

(Again using m+ 1 instead of m to cover the m = 0 case). An
identical bound holds for My, and so, except with probability
O
(

1
m+1

)
both are ≥ m/2. We get:

Pr [C] = Θ
(

1
m+ 1

)
+O

(
1√

A(m+ 1)

)
+O

(
1
A

)
= Θ

(
1

m+ 1

)
+O

(
1
A

)
. �



Proof of First Collision Lemma

Using the fact that cj is identically distributed for all j,

Ed̃ = d = 1
t
· E

n∑
i=1

ci = n

t
·E [c]j = n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1]

n

A
= n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1].

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).
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Ed̃ = d = 1
t
· E

n∑
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ci = n

t
·E [c]j = n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1]

n

A
= n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1].

Rearranging gives:

Pr [cj ≥ 1] = t

A · E[cj |cj ≥ 1] .

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).



Proof of First Collision Lemma

To compute E[cj |cj ≥ 1], we use Re-collision Lemma and linearity of
expectation. Since t ≤ A, the O

( 1
A

)
term in Re-collision Lemma is

absorbed into the Θ
(

1
m+1

)
. Let r ≤ t be the first round that the

two agents collide. We have:

E[cj |cj ≥ 1] =
t−r∑
m=0

Θ
(

1
m+ 1

)
= Θ (log(t− r)) .



Proof of First Collision Lemma

To compute E[cj |cj ≥ 1], we use Re-collision Lemma and linearity of
expectation. Since t ≤ A, the O

( 1
A

)
term in Re-collision Lemma is

absorbed into the Θ
(

1
m+1

)
. Let r ≤ t be the first round that the

two agents collide. We have:

E[cj |cj ≥ 1] =
t−r∑
m=0

Θ
(

1
m+ 1

)
= Θ (log(t− r)) .

After any round the agents are located at uniformly and
independently chosen positions, so collide with probability exactly
1/A. So, the probability of the first collision between the agents
being in a given round can only decrease as the round number
increases. So, at least 1/2 of the time that cj ≥ 1, there is a collision
in the first t/2 rounds. So, overall, thanks to the previous
calculations, E[cj |cj ≥ 1] = Θ (log(t− t/2)) = Θ (log t), hence
Pr [cj ≥ 1] = Θ

(
t

A·log t

)
, completing the proof. �



Proof of Collision Moment Lemma

We expand E[c̄kj ] = Pr[cj ≥ 1] · E[c̄kj |cj ≥ 1] + Pr[cj = 0] · E[c̄kj |cj = 0],
and so by First Collision Lemma:

E
[
c̄kj
]

= O

(
t

A log t · E
[
c̄kj |cj ≥ 1

]
+ E

[
c̄kj |cj = 0

])
.

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − j . For

all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).
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(
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A log t · E
[
c̄kj |cj ≥ 1

]
+ E

[
c̄kj |cj = 0

])
.

E
[
c̄kj |cj = 0

]
= (Ecj)k = (t/A)k ≤ t

Ak! logk−1 t for all k ≥ 2. Further,
E
[
c̄kj |cj ≥ 1

]
≤ E

[
ckj |cj ≥ 1

]
, since Ecj = t

A ≤ 1. So to prove the
lemma, it just remains to show that E

[
ckj |cj ≥ 1

]
= O

(
k! logk t

)
.

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − j . For

all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).



Proof of Collision Moment Lemma

Conditioning on cj ≥ 1, we know the agents have an initial collision in
some round t′ ≤ t. We split cj over rounds:
cj =

∑t
r=t′ cj(r) ≤

∑t′+t−1
r=t′ cj(r). To simplify notation we relabel

round t′ round 1 and so round t′ + t− 1 becomes round t. Expanding
ckj out fully using the summation:

E
[
ckj
]

= E

[
t∑

r1=1

t∑
r2=1

...
t∑

rk=1
cj(r1)cj(r2)...cj(rk)

]

=
t∑

r1=1

t∑
r2=1

...

t∑
rk=1

E [cj(r1)cj(r2)...cj(rk)] .



Proof of Collision Moment Lemma

E [cr1(j)cr2(j)...crk(j)] is just the probability that the two agents
collide in each of rounds r1, r2, ...rk. Assume w.l.o.g. that
r1 ≤ r2 ≤ ... ≤ rk. By Re-collision Lemma this is:
O
(

1
r1(r2−r1+1)(r3−r2+1)...(rk−rk−1+1)

)
. So we can rewrite, by linearity

of expectation:

E
[
ckj
]

= k!
t∑

r1=1

t∑
r2=r1

...
t∑

rk=rk−1

O

(
1

r1(r2 − r1 + 1)(r3 − r2 + 1)...(rk − rk−1 + 1)

)
.



Proof of Collision Moment Lemma

The k! comes from the fact that in this sum we only have ordered
k-tuples and so need to multiple by k! to account for the fact that the
original sum is over unordered k-tuples. We can bound:

t∑
rk=rk−1

1
rk − rk−1 + 1 = 1 + 1

2 + ...+ 1
t

= O(log t)

so rearranging the sum and simplifying gives:

E
[
ckj
]

= k!
t∑

r1=1

1
r1

t∑
r2=r1+1

1
r2 − r1

...
t∑

rk=rk−1+1

1
rk − rk−1

= k!
t∑

r1=1

1
r1

t∑
r2=r1

1
r2 − r1 + 1 ...

t∑
rk−1=rk−2

1
rk−2 − rk−1 + 1 ·O(log t).
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The k! comes from the fact that in this sum we only have ordered
k-tuples and so need to multiple by k! to account for the fact that the
original sum is over unordered k-tuples. We can bound:

t∑
rk=rk−1

1
rk − rk−1 + 1 = 1 + 1

2 + ...+ 1
t

= O(log t)

so rearranging the sum and simplifying gives:

E
[
ckj
]

= k!
t∑

r1=1

1
r1

t∑
r2=r1+1

1
r2 − r1

...
t∑

rk=rk−1+1

1
rk − rk−1

= k!
t∑

r1=1

1
r1

t∑
r2=r1

1
r2 − r1 + 1 ...

t∑
rk−1=rk−2

1
rk−2 − rk−1 + 1 ·O(log t).

We repeat this simplification for each level of summation replacing∑t
ri=ri−1

1
ri−ri−1+1 with O(log t). Iterating through the k levels gives

E
[
ckj
]

= O(k! logk t) giving the lemma. �
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