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and symmetric function of states of neighbors.
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Dynamics

Dynamics: For every graph, agent and round, states
are updated according to fixed rule of current state
and symmetric function of states of neighbors.

O
Examples of Dynamics: e
e 3-Median dynamics ./O
[Doerr et al. ’11]
e 3-Majority dynamics M

Becchetti et al. 14, ’16
[ ) o

e Undecided-state dynamics ® @
[Becchetti et al. ’15] ®

Can dynamics solve a problem non-trivial in
centralized setting?
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) < £z(t=1) red
otherwise.
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The Average Dynamics

Al nodes at the same time:
e At t =0, randomly pick
value (") € {41,-1}.

e Then, at each round
1. Set color () to
average of neighbors,
2. Set label to blue if
) < £z(t=1) red
otherwise.

—

Well studied process [Shah ’09]:

e Converges to (weighted) global
average of initial values,

e Convergence time = mixing
time of G,

e Important applications in
tault-tolerant self-stabilizing

CONse1sus.
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4 V1, ..., U, €igenvectors of

Y W WS random walk matrix P:
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Our Results

(Informal) Theorem. G = (Vi Vs, E) s.t.
i) x = 1y, — 1y, close to right-eigenvector of
eigenvalue Ao of transition matrix of &G, and
ii) gap between A\ and A = max{As, |\,|}
sufficiently large, then

Averaging (approximately) identifies (V7, V).
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Properties of the Averaging Dynamics

Al nodes at the same time:
o At t = 0, randomly pick Closely related to simple

value ) € {blue,red}. / random walk on G:
e Then, at each round  / Yv(t) := position at time ¢ of

1. Set color (¥ to :
, simple random walk
average of neighbors, o f
2. Set label to blue if starting irom v "
() < (=D red = x(t)(v) = E[x(O)(Yv )]

otherwise.




Properties of the Averaging Dynamics

Al nodes at the same time:
e At t =0, randomly pick

value z(*) € {blue, red}.

e Then, at each round
1. Set color () to
average of neighbors,
2. Set label to blue if
) < (=1 red
otherwise.

A= (]1((U,U)EE))U,UEV
adjacency matrix of GG

D diagonal matrix of
node degrees in G

P = D1 A transition
matrix of random walk

Features:

e No explicit
elgenvector
computation

e Implicit
“simulation” of
power method

Averaging / :
is a linear x() — | @
dynamics \:

X(t) — P . X(t_l) — Pt . X(O)




Properties of the Averaging Dynamics

Al nodes at the same time:
e At t =0, randomly pick
value z(*) € {blue, red}.
e Then, at each round
1. Set color () to
average of neighbors,
2. Set label to blue if —
t® < 2= red

otherwise.

Remove projection
on first eigenspace
— running time
depending on Ay /A

Bottleneck of mixing time for spectral methods:

Distributed computation of second eigenvector
Kempe & McSherry "08]: O(T iz log” n).



Community Detection as Minimum Bisection

Minimum Bisection Problem.

Input: a graph G with 2n nodes.

Output: S = arg gnclg E(S,V —59).

|Garey, Johnson, Stockmeyer "76]:
Min-Bisection is NP-Complete.



The Stochastic Block Model

Stochastic Block Model (SBM). Two
“communities” of equal size V; and V5, each edge
inside a community included with probability

p = -, each edge across communities included with

probability g = % < p.




The Stochastic Block Model

Reconstruction problem. Given graph generated
by SBM, find original partition.
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The Stochastic Block Model

Reconstruction problem. Given graph generated
by SBM, find original partition.
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Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al.
SODA’16]. A graph G = (V1|UVs, F) s.t.
¢ ’Vl‘ — ’VQ‘a

o & Ve G‘V2 ~ random a-regular graphs

o G| Vi) ™ random b-regular bipartite graph.

4-regular 4-regular
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Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al.
SODA’16]|. A graph G = (Vi|JVs, F) s.t
¢ ’Vl‘ — ’VQ‘a

o & Ve G‘VQ ~ random a-regular graphs

o G| Vi) ™ random b-regular bipartite graph.
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When is Reconstruction Possible?

'Decelle, Massoulie, Mossel, Brito, Abbe et al.]:
Reconstruction is possible iff
e a —b>2Vdin SBM (weak)
e a—b>2(y/a—vb)Vb+ 2logn in SBM (strong)
e a —b>2yd—1in RSBM (strong)

Linearizations of Belief Propagation, advanced
spectral methods (power and Lanczos method), SDP.
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Reconstruction is possible iff
e a —b>2Vdin SBM (weak)
e a—b>2(y/a—vb)Vb+ 2logn in SBM (strong)
e a —b>2yd—1in RSBM (strong)

Linearizations of Belief Propagation, advanced

spectral mety/s( (power_and Lanczos method), SDP.
Not a dynamics: W

nonlinear, different Centralized, not easy to
messages to different make distribute
neighbors



Regular Clustered and Clustered Graphs

(2n,d, b)-clustered Regular Graph.
A graph G = (V4 JVo, F) s.t

e (& is d regular,
e cach v € V; has b neighbors in V3_;.

=\ ‘(4,!* Jl> 4\\

. —\ ~“

a-regular a-regular

No randomness! OFegular bipartite
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o [Vi|=|Va,

e (& is d regular,

e cach v € V; has b neighbors in V3_;.

Thm. If G‘Vl, G}VQ expanders and Ay /A > 1

(e.g. if b < d/2), averaging produces strong
reconstruction in O(logn) rounds.
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(2n,d, b)-clustered Regular Graph.
A graph G = (V1| Vs, E) s.t.

e (& is d regular,
e cach v € V; has b neighbors in V3_;.

Thm. If G‘Vl, G}VQ expanders and Ay /A > 1

(e.g. if b < d/2), averaging produces strong
reconstruction in O(logn) rounds.

RSBM is (2n,d, b)-clustered regular
with G‘Vl, G ” expanders w.h.p. —

Cor. Strong reconstruction (a — b > 2v/d — 1)




Regular Clustered and Clustered Graphs

(2n,d, b, y)-clustered Graph.
A graph G = (V1| Vs, E) s.t.
o [Vi|=|Va,
e every node has degree d 4 vd
e cach v € V; has b &= vd neighbors in V3_;.

Thm. If min{)s, 5%} > X and v = O(%2 — A3)
— O(v?*/(2%52 — A\3)?)-weak reconstruction.




Regular Clustered and Clustered Graphs

(2n,d, b, y)-clustered Graph.
A graph G = (V1| JV5, E) s.t
o [Vi|=|Va,
e every node has degree d 4 vd
e cach v € V; has b &= vd neighbors in V3_;.

Thm. If min{\y, 252} > X and v = O(%2 — \3)
— O(v?*/(2%52 — A\3)?)-weak reconstruction.

Cor. If a — b > /dlogn and b > 1Og" . SBM is

(2n,d, b, 6 1Og”) clust. with mm{)\g,24 lOgn} > A

w.h.p. — O(élf—b;)—weak reconstruction.




Analysis: Roadmap

Strong reconstruction

St tructi
on (2n,d,b)-clustered rong reconstruction

on Regular SBM

regular graphs

l

- dlogn
O( (a—bz/d—k )-weak O( =L )—Weak
reconst. on —® reconstruction

(2n,d, b, v)-clust. graphs on SBM




Analysis: Roadmap

Strong reconstruction
on (2n,d,b)-clustered
regular graphs

l

Strong reconstruction
on Regular SBM

2 dlogn
O(a=p)7a—x )-Weak O(ﬁ)—vyeak
reconst. on —® reconstruction
(2n,d, b, v)-clust. graphs on SBM

O(ﬁ)—w’eak

reconstruction on SBM




Analysis on Regular Graphs

) symmetric =—> orthonormal
P=D1A= EA —® eigenvectors vy, ..., vy, and real
eigenvalues A1, ..., Agy,.
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) symmetric =—> orthonormal
P=D1A= EA —® eigenvectors vy, ..., vy, and real
eigenvalues A1, ..., Agy,.

x() = Pt x©) = T A (yTx(0))y, 20 | (yTx(0))y,

Perron-Frobenius Theox‘?yA

A =1, ’)\7;751’ <1



Analysis on Regular Graphs

) symmetric =—> orthonormal
P=D1A= EA —® eigenvectors vy, ..., vy, and real
eigenvalues A1, ..., Agy,.

x(t) — pt . x(0) — )y >\§(V7;TX(O>)W

Vl_ﬁl

Regular clustered graphs = Py = (22) - x




Analysis on Regular Graphs

) symmetric =—> orthonormal
P=D1A= EA —® eigenvectors vy, ..., vy, and real
eigenvalues A1, ..., Agy,.

x(t) — pt . x(0) — )y A?(VIX(O))W

Vi 1

1
V2n

Regular clustered graphs = Py = (22) - x

_______________________________




Analysis on Regular Graphs

) symmetric =—> orthonormal
P=D1A= EA —® eigenvectors vy, ..., vy, and real
eigenvalues A1, ..., Agy,.

x(t) — pt . x(0) — )y A?(VIX(O))W

Vi 1

— 1
V2n
Regular clustered graphs = Py = (22) - x

If A < %% = Xy then

1 1
X(H‘l) - %(1TX(O))1 1 )\g%(XTX(O))X 1+ e(t)

with (e[| = || S22 X(vIx@)v; | < A [x®]| < Atv/2n



Analysis on Regular Graphs

%(% ZuEV1 X(O) (u) o % ZUEVQ X(O) (u))
@

% D ey x (%) (u) .+. +. :?E.;. @O
©of, 0+‘$$ g
+w* 1 O

If)\<a7_b:)\2then

4D = L (75 ®)1 43 L(XTXm))X L e
2N 2n

with [|e(®| = | 27 M(vTx@)wi]| < XN x©|| < X' v2n



Analysis on Regular Graphs

A (1 + 6) < 22 = Ay |then
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Analysis on Regular Graphs

TfA(1 + 6) < %2 = Xy |then

1 1
(1) %(1TX(0))1 n )\g%(XTX(O))X NG

with [|e®|| < X'v/2n

X(t) _X(t_l) p— (XTX(O)))\E_l()\Q — ]_)X_I_ e(t) —_ e(t_l)J

\

N

<A™ L if t=Q(logn)

sign(x(® (u) —x(~1 (u)) = sign(x(u)) or —sign(x(w))




Analysis on Regular Graphs

Corollary.
RSBM is (2n,d, b)-clust. regular and

= O(%) < 2= by random degree k lifts

d
[Friedman & Kohler]

—> Strong reconstruction in logn w.h.p.




More Communities

(k,n,d,b)-clustered Regular Graph. A graph
- k
G = (Ui Vi, E) sit.
¢ VAT = Vil
e every node has degree d =a + (k — 1)b
e cach v € V; has b neighbors in V; for j # 1.

aT_b eigenval. with v, ..., v} eigenvec. s.t. constant

on each V; and 17v;, = 0.



More Communities

(k,n,d,b)-clustered Regular Graph. A graph

- k
G = (Ui Vi, E) sit.
o [Vi|=---=[Vil,
e every node has degree d =a + (k — 1)b
e cach v € V; has b neighbors in V; for j # 1.
a—b

“— eigenval. with v, ..., v, eigenvec. s.t. constant

on each V; and 17v;, = 0.
(22 =X = .. = Ap)

Thm. If aT—b > )\(1 —+ 5)@7)\ — max{)\kH, ’)\kn‘}a

then ©(logn) parallel run of averaging gives strong
reconstruction in O(logn) rounds.
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Sparisification.

At each round, pick an edge u.a.r. (population protocols):
those two nodes averages their values.

Simulations. Does not (seem to) work for a — b < logn.
Analysis. Should work for a — b > logn.



Future Work

Non-regular SBM.
How much “weak” with many communities?

Sparisification.

At each round, pick an edge u.a.r. (population protocols):
those two nodes averages their values.

Simulations. Does not (seem to) work for a — b < logn.
Analysis. Should work for a — b > logn.

Planted Clique.
Grn.p U “clique of v/n(1 4 J) nodes”:
Does averaging identify the clique?
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