
†

Emanuele Natale†

joint work with
Luca Becchetti†, Andrea Clementi∗,

Francesco Pasquale† and Luca Trevisan?

?preprint at goo.gl/aqZmCD

Workshop on
Random Processes in Discrete Structures

30 August - 2 September, 2016
Warwick, UK

Find Your Place: Simple Distributed
Algorithms for Community Detection

? ∗



Dynamics

Dynamics: For every graph, agent and round, states
are updated according to fixed rule of current state
and symmetric function of states of neighbors.



Dynamics

Dynamics: For every graph, agent and round, states
are updated according to fixed rule of current state
and symmetric function of states of neighbors.

Examples of Dynamics:
• 3-Median dynamics

[Doerr et al. ’11] =⇒ < <



Dynamics

Dynamics: For every graph, agent and round, states
are updated according to fixed rule of current state
and symmetric function of states of neighbors.

Examples of Dynamics:
• 3-Median dynamics

[Doerr et al. ’11]
• 3-Majority dynamics

[Becchetti et al. ’14, ’16]

=⇒



Dynamics

Dynamics: For every graph, agent and round, states
are updated according to fixed rule of current state
and symmetric function of states of neighbors.

Examples of Dynamics:
• 3-Median dynamics

[Doerr et al. ’11]
• 3-Majority dynamics

[Becchetti et al. ’14, ’16]
• Undecided-state dynamics

[Becchetti et al. ’15]

=⇒

??



Dynamics

Dynamics: For every graph, agent and round, states
are updated according to fixed rule of current state
and symmetric function of states of neighbors.

Examples of Dynamics:
• 3-Median dynamics

[Doerr et al. ’11]
• 3-Majority dynamics

[Becchetti et al. ’14, ’16]
• Undecided-state dynamics

[Becchetti et al. ’15]

=⇒

??

Can dynamics solve a problem non-trivial in
centralized setting?
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1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.
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Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

Well studied process [Shah ’09]:
• Converges to (weighted) global

average of initial values,
• Convergence time = mixing

time of G,
• Important applications in

fault-tolerant self-stabilizing
consensus.
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t

−1

+1

· · ·α

Va
lu

e

x(∞) = α ≈ 1
2n
∑
v xv

v1, ..., vn eigenvectors of
random walk matrix P :
v1 = 1 = (1, ..., 1)
v2 ≈ χ = (1, ..., 1,−1, ...,−1)

“nice”
graph



Our Results

(Informal) Theorem. G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of
eigenvalue λ2 of transition matrix of G, and
ii) gap between λ2 and λ = max{λ3, |λn|}
sufficiently large, then
Averaging (approximately) identifies (V1, V2).



Properties of the Averaging Dynamics
Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {blue, red}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

Pr
(∣∣∣∑v∈V1

x(v)−
∑
v∈V2

x(v)
∣∣∣ > nε

)
≥ 1− nΩ(1) (w.h.p.)

X

Pr(X)

0

≈ Unif(−σ, σ)



Properties of the Averaging Dynamics
Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {blue, red}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

Closely related to simple
random walk on G:
Y

(t)
v := position at time t of

simple random walk
starting from v

=⇒ x(t)(v) = E[x(0)(Y (t)
v )]



Properties of the Averaging Dynamics

Features:
• No explicit

eigenvector
computation

• Implicit
“simulation” of
power method

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {blue, red}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

A = (1((u,v)∈E))u,v∈V
adjacency matrix of G

P = D−1A transition
matrix of random walk

D diagonal matrix of
node degrees in G

Averaging
is a linear
dynamics

( )
x(t) =

x(t) = P · x(t−1) = P t · x(0)



Properties of the Averaging Dynamics
Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {blue, red}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

Remove projection
on first eigenspace
=⇒ running time
depending on λ2/λ

Bottleneck of mixing time for spectral methods:

Distributed computation of second eigenvector
[Kempe & McSherry ’08]: O(τmix log2 n).



Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with 2n nodes.
Output: S = arg min

S⊂V
|S|=n

E(S, V − S).

[Garey, Johnson, Stockmeyer ’76]:
Min-Bisection is NP-Complete.



The Stochastic Block Model

Stochastic Block Model (SBM). Two
“communities” of equal size V1 and V2, each edge
inside a community included with probability
p = a

n , each edge across communities included with
probability q = b

n < p.

q
p p
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Reconstruction problem. Given graph generated
by SBM, find original partition.

qp p∼



The Stochastic Block Model

Reconstruction problem. Given graph generated
by SBM, find original partition.

qp p∼

λ2(P ) ≈ a−b
d =⇒ mixing time

of a random walk on G2n, a
n ,

b
n

is ≥ 1
1−λ2

≈ a+b
2b .



Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al.
SODA’16]. A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G

∣∣
V1

, G
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V2
∼ random a-regular graphs

• G
∣∣
E(V1,V2) ∼ random b-regular bipartite graph.

4-regular 4-regular
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Regular SBM (RSBM) [Brito et al.
SODA’16]. A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G

∣∣
V1

, G
∣∣
V2
∼ random a-regular graphs

• G
∣∣
E(V1,V2) ∼ random b-regular bipartite graph.

4-regular 4-regular
2-regular bipartite



When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]:
Reconstruction is possible iff
• a− b > 2

√
d in SBM (weak)

• a− b > 2(
√
a−
√
b)
√
b+ 2 logn in SBM (strong)

• a− b > 2
√
d− 1 in RSBM (strong)

Linearizations of Belief Propagation, advanced
spectral methods (power and Lanczos method), SDP.
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[Decelle, Massoulie, Mossel, Brito, Abbe et al.]:
Reconstruction is possible iff
• a− b > 2

√
d in SBM (weak)

• a− b > 2(
√
a−
√
b)
√
b+ 2 logn in SBM (strong)

• a− b > 2
√
d− 1 in RSBM (strong)

Linearizations of Belief Propagation, advanced
spectral methods (power and Lanczos method), SDP.

Not a dynamics:
nonlinear, different
messages to different
neighbors

Centralized, not easy to
make distribute



Regular Clustered and Clustered Graphs

(2n, d, b)-clustered Regular Graph.
A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G is d regular,
• each v ∈ Vi has b neighbors in V3−i.

a-regular a-regular
b-regular bipartiteNo randomness!
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(2n, d, b)-clustered Regular Graph.
A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G is d regular,
• each v ∈ Vi has b neighbors in V3−i.

Thm. If G
∣∣
V1

, G
∣∣
V2

expanders and λ2/λ > 1
(e.g. if b� d/2), averaging produces strong
reconstruction in O(logn) rounds.

RSBM is (2n, d, b)-clustered regular
with G

∣∣
V1

, G
∣∣
V2

expanders w.h.p. =⇒
Cor. Strong reconstruction (a− b > 2

√
d− 1)



Regular Clustered and Clustered Graphs

(2n, d, b, γ)-clustered Graph.
A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• every node has degree d± γd
• each v ∈ Vi has b± γd neighbors in V3−i.

Thm. If min{λ2,
a−b
d } > λ and γ = O(a−bd − λ3)

=⇒ O(γ2/(a−bd − λ3)2)-weak reconstruction.
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(2n, d, b, γ)-clustered Graph.
A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• every node has degree d± γd
• each v ∈ Vi has b± γd neighbors in V3−i.

Thm. If min{λ2,
a−b
d } > λ and γ = O(a−bd − λ3)

=⇒ O(γ2/(a−bd − λ3)2)-weak reconstruction.

Cor. If a− b >
√
d logn and b > logn

n2 , SBM is
(2n, d, b, 6

√
logn
d )-clust. with min{λ2, 24

√
logn
d } > λ

w.h.p. =⇒ O
(
d logn
(a−b)2

)
-weak reconstruction.



Analysis: Roadmap

O( d logn
(a−b)2 )-weak

reconstruction
on SBM

Strong reconstruction
on (2n, d, b)-clustered
regular graphs

Strong reconstruction
on Regular SBM

O( γ2

(a−b)/d−λ )-weak
reconst. on
(2n, d, b, γ)-clust. graphs



Analysis: Roadmap

O( d logn
(a−b)2 )-weak

reconstruction
on SBM

Strong reconstruction
on (2n, d, b)-clustered
regular graphs

Strong reconstruction
on Regular SBM

O( γ2

(a−b)/d−λ )-weak
reconst. on
(2n, d, b, γ)-clust. graphs

O( d
(a−b)2 )-weak

reconstruction on SBM
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eigenvectors v1, ...,v2n and real
eigenvalues λ1, ..., λ2n.
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dA

x(t) = P t · x(0) =
∑
i λ

t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,v2n and real
eigenvalues λ1, ..., λ2n.

Perron-Frobenius Theorem:
λ1 = 1, |λi 6=1| < 1

t→∞ (vᵀ
1x(0))v1
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x(t) = P t · x(0) =
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t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,v2n and real
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2n1

Regular clustered graphs =⇒ Pχ = (a−bd ) · χ


· · · · · · · · · · · · · · · · · ·
· · · a “1”s · · · · · · b “1”s · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · b “1”s · · · · · · a “1”s · · ·
· · · · · · · · · · · · · · · · · ·

 ·


1
...
1
−1
...
−1


=



1
...
1
−1
...
−1


1
d

a−b
d



Analysis on Regular Graphs

P = D−1A = 1
dA

x(t) = P t · x(0) =
∑
i λ

t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,v2n and real
eigenvalues λ1, ..., λ2n.

v1 = 1√
2n1

Regular clustered graphs =⇒ Pχ = (a−bd ) · χ

If λ < a−b
d = λ2 then

x(t+1) = 1
2n (1ᵀx(0))1 + λt2

1
2n (χᵀx(0))χ+ e(t)

with ‖e(t)‖ =
∥∥∥∑2n

i=3 λ
t
i(v

ᵀ
i x(0))vi

∥∥∥ ≤ λt‖x(0)‖ ≤ λt
√

2n



Analysis on Regular Graphs

If λ < a−b
d = λ2 then

x(t+1) = 1
2n (1ᵀx(0))1 + λt2

1
2n (χᵀx(0))χ+ e(t)

with ‖e(t)‖ =
∥∥∥∑2n

i=3 λ
t
i(v

ᵀ
i x(0))vi

∥∥∥ ≤ λt‖x(0)‖ ≤ λt
√

2n

1
2n
∑
u∈V x(0)(u)

1
2
( 1
n

∑
u∈V1

x(0)(u)− 1
n

∑
u∈V2

x(0)(u)
)

+
+

+

+

+
+

+
++ ++

+
+

+ +
+

++ =

+
+

+

+

+
+

+
++ ++

+
+

+ +
+

+− = −



Analysis on Regular Graphs

If λ(1 + δ) < a−b
d = λ2 then

x(t) = 1
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1
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with ‖e(t)‖ ≤ λt
√

2n



Analysis on Regular Graphs

If λ(1 + δ) < a−b
d = λ2 then

x(t) = 1
2n (1ᵀx(0))1 + λt2

1
2n (χᵀx(0))χ+ e(t)

with ‖e(t)‖ ≤ λt
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Analysis on Regular Graphs

If λ(1 + δ) < a−b
d = λ2 then

x(t) = 1
2n (1ᵀx(0))1 + λt2

1
2n (χᵀx(0))χ+ e(t)

with ‖e(t)‖ ≤ λt
√

2n

x(t)−x(t−1) = (χᵀx(0))λt−1
2 (λ2−1)χ+ e(t) − e(t−1)︸ ︷︷ ︸

�λt−1
2 if t=Ω(logn)

sign(x(t)(u)−x(t−1)(u)) = sign(χ(u)) or −sign(χ(u))



Analysis on Regular Graphs

Corollary.
RSBM is (2n, d, b)-clust. regular and
λ = O( 1√

d
)� a−b

d by random degree k lifts
[Friedman & Kohler]
=⇒ Strong reconstruction in logn w.h.p.

sign(x(t)(u)−x(t−1)(u)) = sign(χ(u)) or −sign(χ(u))
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(k, n, d, b)-clustered Regular Graph. A graph
G = (

⋃̇k
i=1Vi, E) s.t.

• |V1| = · · · = |Vk|,
• every node has degree d = a+ (k − 1)b
• each v ∈ Vi has b neighbors in Vj for j 6= i.

a−b
d eigenval. with v2, ...,vk eigenvec. s.t. constant

on each Vi and 1ᵀvi = 0.



More Communities

(k, n, d, b)-clustered Regular Graph. A graph
G = (

⋃̇k
i=1Vi, E) s.t.

• |V1| = · · · = |Vk|,
• every node has degree d = a+ (k − 1)b
• each v ∈ Vi has b neighbors in Vj for j 6= i.

a−b
d eigenval. with v2, ...,vk eigenvec. s.t. constant

on each Vi and 1ᵀvi = 0.

Thm. If a−b
d > λ(1 + δ) with λ = max{λk+1, |λkn|},

then Θ(logn) parallel run of averaging gives strong
reconstruction in O(logn) rounds.

(a−bd = λ2 = ... = λk)
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Future Work

Sparisification.
At each round, pick an edge u.a.r. (population protocols):
those two nodes averages their values.
Simulations. Does not (seem to) work for a− b� logn.
Analysis. Should work for a− b� logn.

Non-regular SBM.
How much “weak” with many communities?

Planted Clique.
Gn,p ∪ “clique of

√
n(1 + δ) nodes”:

Does averaging identify the clique?



Thank
You!
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