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Stabilizing Almost-Consensus

A set of nodes each having one color out of a set >..
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Initial colors are called valid.



Stabilizing Almost-Consensus

At the start of each round, nodes uptate their color,

according to the given communication model and
protocol.



Stabilizing Almost-Consensus

At the end of each round, an F'-dynamic adversary
can change the color of F' nodes,

possibly chosing different subsets of nodes over
different rounds.



Stabilizing Almost-Consensus

Except for a small number of nodes
we want to reach consensus (almost consensus),

o@“

on any valid color (almost validity),



Stabilizing Almost-Consensus

Almost-consensus has to be preserved for any
poly(n) rounds,

even if the adversary changes colors at each round
(almost stability).



Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees
that, w.h.p., for some v < 1, from any initial conf.,
in a finite number of rounds, the system reaches a
set of conf.s where n — O(n”) nodes
o hold the same color (almost consensus),
o the color was in the initial conf. (almost
validity),
o and the convergence hold for any poly(n) rounds
(almost stability).



Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees
that, w.h.p., for some v < 1, from any initial conf.,
in a finite number of rounds, the system reaches a
set of conf.s where n — O(n”) nodes
o hold the same color (almost consensus),
o the color was in the initial conf. (almost
validity),
o and the convergence hold for any poly(n) rounds
(almost stability).

Cf. classical byzantine agreement:
agreement, validity and termination.



The Setting

Communication model. Uniform Gossip model:
Each node in one round can communicate with one
node chosen u.a.r.

Protocol constraints. simple rule (dynamics):
Anonymous, O(log|X|) local memory and message
size, counters of non-constant length, ...

Motivations. Biological systems, chemical
reaction networks, social networks, sensor networks.



Previous Work: 3-Median Dynamics
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Each node observes the color of three other nodes
chosen u.a.r....



Previous Work: 3-Median Dynamics

...and changes its color according to the median of
these three...



Previous Work: 3-Median Dynamics
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Colors are totally ordered: ...< O < ‘ < .<



The 3-Median Process

3-Median Adversary

Almost consensus? Almost validity? Almost stability?



3-Median Dynamics

Theorem (Doerr, Goldberg, Minder, Sauerwald,
Scheideler *11). For any y/n-bounded adversary, the
3-median computes an almost stable value between
the (n/2 — cy/nlogn)-largest and the

(n/2 + cy/nlogn)- largest of the initial values, in
O(logk - loglog n + logn) rounds w.h.p.
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Scheideler *11). For any y/n-bounded adversary, the
3-median computes an almost stable value between
the (n/2 — cy/nlogn)-largest and the

(n/2 + cy/nlogn)- largest of the initial values, in
O(logk - loglog n + logn) rounds w.h.p.

Does 3-median guarantee Stabilizing Almost
Consensus?

e Almost validity
o Almost stability
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3-Median Dynamics

Theorem (Doerr, Goldberg, Minder, Sauerwald,
Scheideler *11). For any y/n-bounded adversary, the
3-median computes an almost stable value between
the (n/2 — cy/nlogn)-largest and the

(n/2 + cy/nlogn)- largest of the initial values, in
O(logk - loglog n + logn) rounds w.h.p.

Does 3-median guarantee Stabilizing Almost
Consensus?

e Almost Validity?



3-Median Dynamics



3-Median Dynamics

o(y/n) changed by adversary



3-Median Dynamics

No almost validity!
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o(y/n) changed by adversary

The adversary can manipulate the system.



The 3-Majority Dynamics
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Each node observes the color of three other nodes
chosen u.a.r....



The 3-Majority Dynamics

...and changes its color according to the majority of
these three (breaking ties u.a.r.).



The Majority Process

3-Majority Adversary

Almost consensus? Almost validity? Almost stability?



3-Majority for Plurality Consensus

cgt) := |{i-colored nodes}| color 1 is the plurality

Initial bias s: Forall i1 £ 1, ¢c; —¢; > s

Theorem (Becchetti, Clementi, Natale, Pasquale,
Silvestri, Trevisan ’14).

e From any configuration with k& < /n colors,
with bias s = Q(v/knlogn), the 3-majority
converges to the plurality color in O(klogn)
rounds w.h.p., against a O(y/n)-bounded
dynamic adversary.

e From configurations where every color is

supported by almost n/k nodes, convergence
takes €2(k) rounds w.h.p.




3-Majority vs 3-Median
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3-Majority with Bias
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Initial bias s: Forall: 41, ¢; —¢; > s

[{i-colored nodes}| color 1 is the plurality
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Our Contribution: 3-Majority without Bias

What if we start from any initial configuration, i.e.
there may be no initial bias?

Theorem. Let £ < n®, for a suitable constant

a <1, and F = O(y/n/(k3 logn)). The 3-majority

dynamics is a stabilizing almost-consensus protocol
against any F-dynamic adversary, with convergence

time O((k*v/Iogn + klogn)(k +logn)), w.h.p.



Our Contribution: 3-Majority without Bias

What if we start from any initial configuration, i.e.
there may be no initial bias?

Theorem. Let £ < n®, for a suitable constant

a <1, and F = O(y/n/(k3 logn)). The 3-majority

dynamics is a stabilizing almost-consensus protocol
against any F-dynamic adversary, with convergence

time O((k*y/Iogn + klogn)(k +logn)), w.h.p.

o First solution of the almost-stabilizing consensus
problem in the uniform gossip model.

e C(Closes open question on convergence of
3-majority for || > 2.



The Problem without Bias

R /Plurality may not be unique.

Supporting nodes
i

Very small gap between the plurality colors and
second colors: one of the second colors may become
plurality.



Analysis of 3-Majority

CZ-(t) := number of nodes supporting color ¢ at round t.

pi(c) = E[C’J(-Hl) |C) = ]

Lemma 1. For any color 3 it holds

Cj 1 5
NJ(C):CJ(1+#—E Ch)'
he k]
Lemma 2. Let 1 be a plurality color and 5 be a
second-most-frequent color, then

00 (142 (1-2))



Analysis of 3-Majority

C,L-(t) := number of nodes supporting color ¢ at round t.

pi(c) = E[C’J(-Hl) |C) = ]

Lemma 1. For any color 3 it holds
MJ(C):CJ( +——$ Z Ch)

Lemma 2. Let 1 be a plurality color and 5 be a
second-most-frequent color, then

s > 50 (142 (1-2)).

n n

Indices are random variables: without bias, cannot
concentrate on who is the plurality.



New Approach: Minorities Disappear

Lemma. Let ¢ be the conf. at round t with j supported
colors. For any color 7 it holds,

E[C"T | Cc® =¢] < ¢ (1 + = - 1.).
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A “dying phase”

Lemma. Let ¢ be any conf. with j < n'/3~¢ supported

colors (Ve > 0 const), and such that an color 7 exists
with ¢; <n/j — +/jnlogn. Within t = O(j logn) rounds
color 7 becomes O (j2 log n) w.h.p.

ci <n/j—+/jnlogn m. c; = O(5%logn)
w.h.p.




A “dying phase”

Lemma. Let ¢ be any conf. with j < n'/3~¢ supported

colors (Ve > 0 const), and such that an color 7 exists
with ¢; <n/j — +/jnlogn. Within t = O(j logn) rounds
color 7 becomes O (j2 log n) w.h.p.

ci <n/j—+/jnlogn m. c; = O(5%logn)
A w.h.p.
A
How to reach such imbalance N N e

from any configuration?




Simmetry Breaking

Folklore example: |
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Simmetry Breaking
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/ - jump of expected length A -----3
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Simmetry Breaking
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Lemma 42.

{X:}: a Markov chain with finite state space €2,
f:Q-N, Y, = f(X,),

>

m € [n] a “target value” and 7 = inf{t e N : Y; > m}.

If Vo € Q) with f(x) < m — 1, it holds

1. Positive drift: E[Y; 1| Xy =2 > f(z) + A (A > 0),

2. Bounded jumps: Pr{Y, > am} < am/n, (a > 1),
then

m
Eir <2a—.
] <205



Simmetry Breaking

Lemma. Let c be any configuration with j

supported colors. Within ¢t = O ( 724/log n) rounds
it holds that

Pr(di such that C,L-(t) <n/j— \/jnlog n) >

O | —

Proof. Let m(t) be the index of minimum-size
color and apply Lemma 42 with f(c) = Cpy)-



Handling the Adversary
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Handling the Adversary
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Handling the Adversary

A
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Handling the Adversary
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Handling the Adversary
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/ - jump of expected length A




Handling the Adversary
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Open Problems

o Convergence in time O(klogn)?

e Stabilizing consensus on
random /expander graphs?



Thank you!
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