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Rumor-Spreading Problem
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Plurality Consensus Problem

This way! This way!

THIS WAY!
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Some examples (Plurality Consensus)

Schools of fish [Sumpter et al. ’08]

Eukaryotic cells [Cardelli et al. ’12]

Insects colonies [Franks et al. ’02]

Flocks of birds [Ben-Shahar et al. ’10]
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Animal Communication Despite Noise

O. Feinerman, B. Haeupler and A. Korman.
Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous
communication. (PODC ’14)

Noise affects animal communication,
but animals cannot use coding theory...

They only consider the binary-opinion case.
Our contribution: generalize to many opinions.

Natural rules efficiently solve rumor spreading and
plurality consensus despite noise.

=⇒



Binary Case - Model

n agents. One agent has one bit to spread.
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Communication model: PUSH model [Pittel ’87]:
at each round each agent can send a bit to another
one chosen uniformly at random.
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Binary Case - Model

Noise: before being received, each bit is flipped with
probability 1/2− ε (ε = n−const).
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Breathe Before Speaking

“[...] ants effectively self-restrict their own tendency to engage in
further interactions that would excite further nest-mates.”

(Razin et al. ’13)
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Breathe Before Speaking

“[...] ants effectively self-restrict their own tendency to engage in
further interactions that would excite further nest-mates.”

(Razin et al. ’13)

Stage 1: Spreading

blue vs red:
40/24 ≈ 1.7



Breathe Before Speaking

Stage 1: Spreading

blue vs red:
40/24 ≈ 1.7

Stage 2: Amplifying majority

# > # ?
# < # ?
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Mathematical Challenges

• Stochastic Dependence

• “Small Deviations”

Pr(X ≥ t) ≤ f(t)

X

Pr(X)

0

Pr(X ≥ t) ≥ 1
2 + g(t)

g(t), f(t) << 1
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Multivalued Case

Noise Matrix:

∼P :=

 
p ,

p ,

p ,

p , p ,

p ,

p , p ,

p ,



Multivalued Case

δ-majority-biased configuration w.r.t. :

Noise Matrix:

Configuration c := (# /n,# /n,# /n)

∼P :=

 
p ,

p ,

p ,

p , p ,

p ,

p , p ,

p ,

# /n−# /n > δ

# /n−# /n > δ



Majority-Preserving Matrix

Random
sender
in conf. c

Noise acting
according to
matrix P

Message
distributed
as c · P



Majority-Preserving Matrix

(cP ) − (cP ) > εδ

(cP ) − (cP ) > εδ

(ε, δ)-majority-preserving noise matrix:

(cP ) − (cP ) > εδ

(cP ) − (cP ) > εδ

Random
sender
in conf. c

Noise acting
according to
matrix P

Message
distributed
as c · P



Main Result

Theorem. Let S be the initial set of agents with
opinions in [k]. Suppose that S is δ =
Ω(
√

logn/|S|)-majority-biased with |S| = Ω( logn
ε2 )

and the noise matrix P is (ε, δ)-majority-preserving.
Then the plurality consensus problem can be solved
in O( logn

ε2 ) rounds w.h.p., with O(log logn+ log 1
ε )

memory per node.



Main Result

Theorem. Let S be the initial set of agents with
opinions in [k]. Suppose that S is δ =
Ω(
√

logn/|S|)-majority-biased with |S| = Ω( logn
ε2 )

and the noise matrix P is (ε, δ)-majority-preserving.
Then the plurality consensus problem can be solved
in O( logn

ε2 ) rounds w.h.p., with O(log logn+ log 1
ε )

memory per node.

|S| = 1 =⇒ rumor spreading in O( logn
ε2 ) rounds



Main Result

Theorem. Let S be the initial set of agents with
opinions in [k]. Suppose that S is δ =
Ω(
√

logn/|S|)-majority-biased with |S| = Ω( logn
ε2 )

and the noise matrix P is (ε, δ)-majority-preserving.
Then the plurality consensus problem can be solved
in O( logn

ε2 ) rounds w.h.p., with O(log logn+ log 1
ε )

memory per node.

P =
(

1/2 + ε 1/2− ε
1/2− ε 1/2 + ε

)
=⇒ Feinerman et al.

|S| = 1 =⇒ rumor spreading in O( logn
ε2 ) rounds
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?∼ c · P

? ∼
Poisso

n((c ·
P )i)



Poisson Approximation
Lemma. balls-in-bins experiment:
- h colored balls are thrown in n bins, hi balls have color
1 ≤ i ≤ k,
- {Xu,i}u∈{1,...,n},i∈{1,...,k} number of i-colored balls that end up
in bin u,
- f non-negative function with Z≥0 arguments
{xu,i}u∈{1,...,n},i∈{1,...,k} and z,
- {Yu,i}u∈{1,...,n},i∈{1,...,k} independent r.v. with
Yu,i ∼Poisson(hi/n) and Z integer valued r.v. independent from
Xu,is and Yu,is.

E [f (X1,1, ..., Xn,1, Xn,2, ..., Xn,k, Z)]

≤ ek
√∏

i hi E [f (Y1,1, ..., Yn,1, Yn,2, ..., Yn,k, Z)] .

Corollary. Given conf. c, if event E holds in process P with
prob 1− n−b with b > (k log h)/(2 logn), then it holds w.h.p.
also in the original process.
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M := most frequent face in the ` throws
(breaking ties at random).
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Probability Amplification

A dice with k faces is thrown ` times.

M := most frequent face in the ` throws
(breaking ties at random).

For any j 6= 1

Pr (M = 1)− Pr (M = j) ≥ const ·
√
` γ(1− γ2)

`−1
2

pr
ob

ab
ili

ty

γ

1 2 . . . face

open problem: const ≈ e−Θ(k)



Binomial vs Beta

Given p ∈ (0, 1) and 0 ≤ j ≤ ` it holds

Pr (Bin(n, p) ≤ j) =
∑
j<i≤`

(
`

i

)
pi (1− p)`−i

=
(

`

j + 1

)
(j + 1)

∫ p

0
zj (1− z)`−j−1

dz

= Pr (Beta(n− k, k + 1) < 1− p).



Binomial vs Beta

Given p ∈ (0, 1) and 0 ≤ j ≤ ` it holds

Pr (Bin(n, p) ≤ j) =
∑
j<i≤`

(
`

i

)
pi (1− p)`−i

=
(

`

j + 1

)
(j + 1)

∫ p

0
zj (1− z)`−j−1

dz

= Pr (Beta(n− k, k + 1) < 1− p).

Multinomial vs Dirichlet?
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