Noisy Rumor Spreading and Plurality Consensus

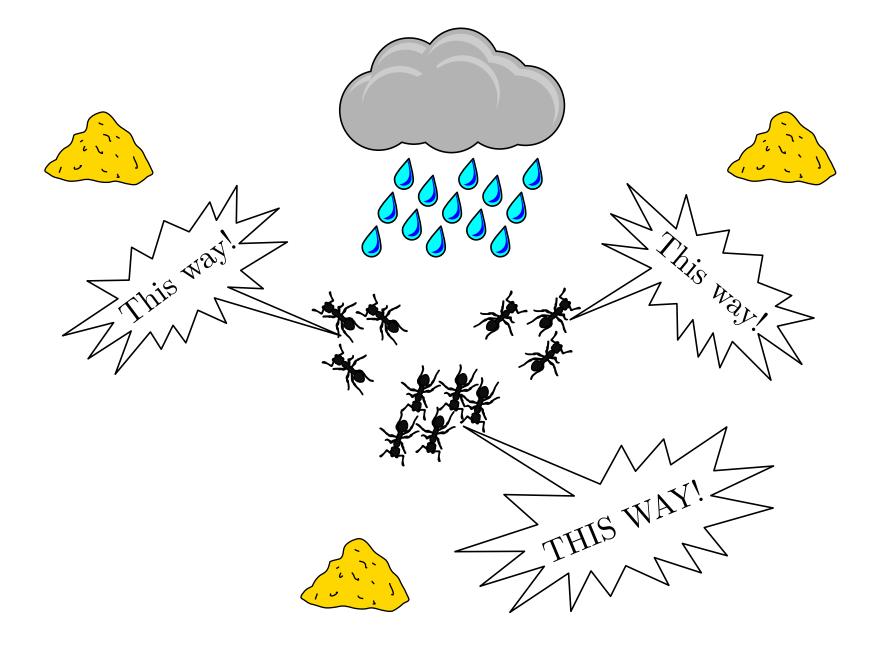
Emanuele Natale[†] joint work with Pierre Fraigniaud^{*}

ACM Symposium on Principles of Distributed Computing July 25-29, 2016 Chicago, Illinois

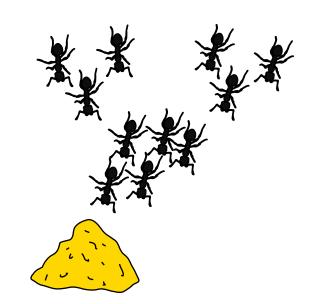
Rumor-Spreading Problem

Rumor-Spreading Problem

Plurality Consensus Problem

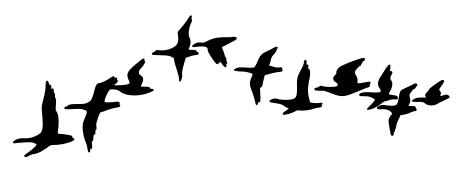


Plurality Consensus Problem

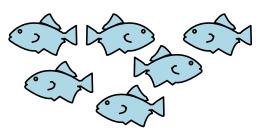


Flocks of birds [Ben-Shahar et al. '10]

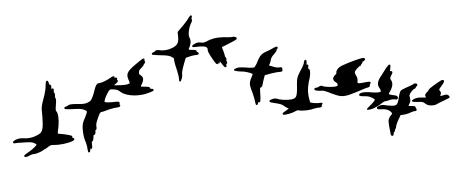
Flocks of birds [Ben-Shahar et al. '10]



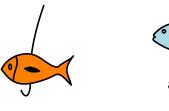
Schools of fish [Sumpter et al. '08]

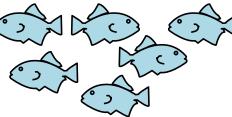


Flocks of birds [Ben-Shahar et al. '10]



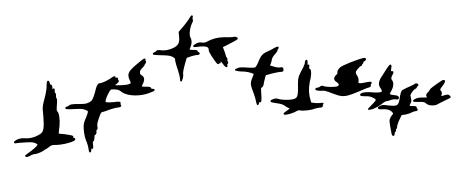
Schools of fish [Sumpter et al. '08]



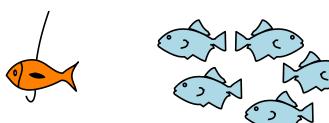


Insects colonies [Franks et al. '02]

Flocks of birds [Ben-Shahar et al. '10]



Schools of fish [Sumpter et al. '08]



Insects colonies [Franks et al. '02]

Eukaryotic cells [Cardelli et al. '12]

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use *coding theory*...

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use *coding theory*...

O. Feinerman, B. Haeupler and A. Korman. Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication. (PODC '14)

 \implies Natural rules efficiently solve rumor spreading and plurality consensus despite noise.

Animal Communication Despite Noise

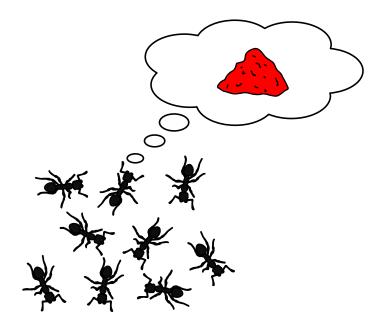
Noise affects animal communication, but animals cannot use *coding theory*...

O. Feinerman, B. Haeupler and A. Korman. Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication. (PODC '14)

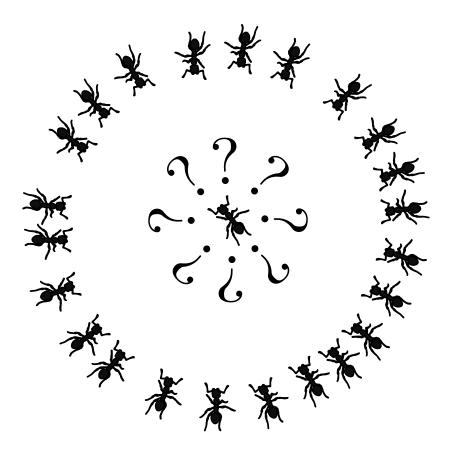
 \implies Natural rules efficiently solve rumor spreading and plurality consensus despite noise.

They only consider the binary-opinion case. **Our contribution**: generalize to **many opinions**.

n agents. One agent has one bit to spread.

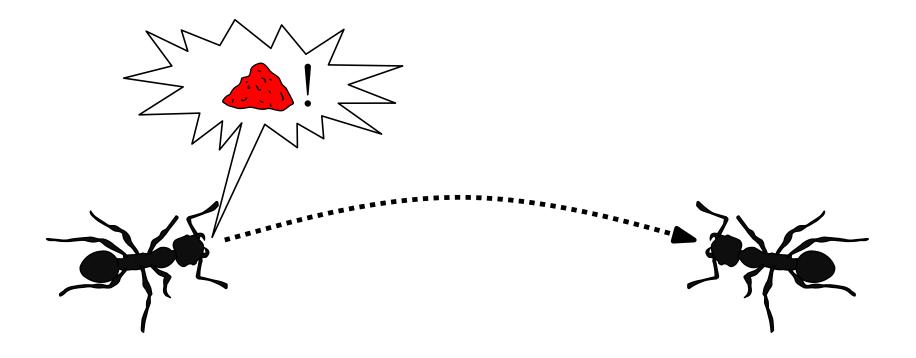


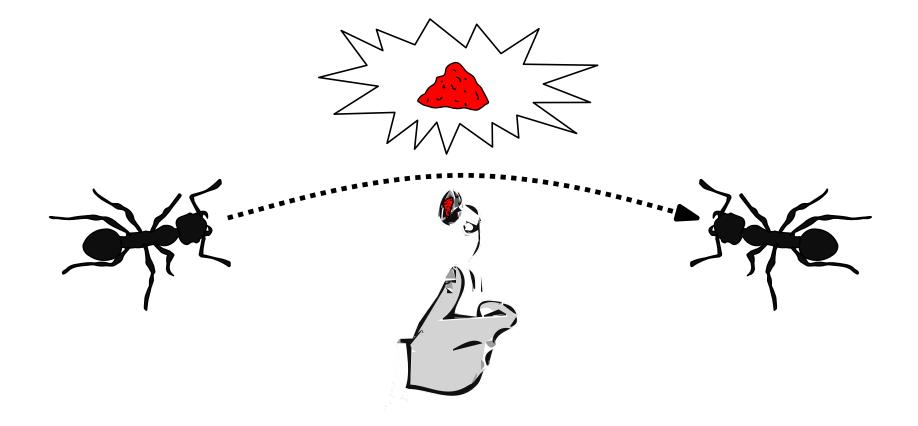
Communication model: \mathcal{PUSH} model [Pittel '87]: at each round each agent can send a bit to another one chosen uniformly at random.

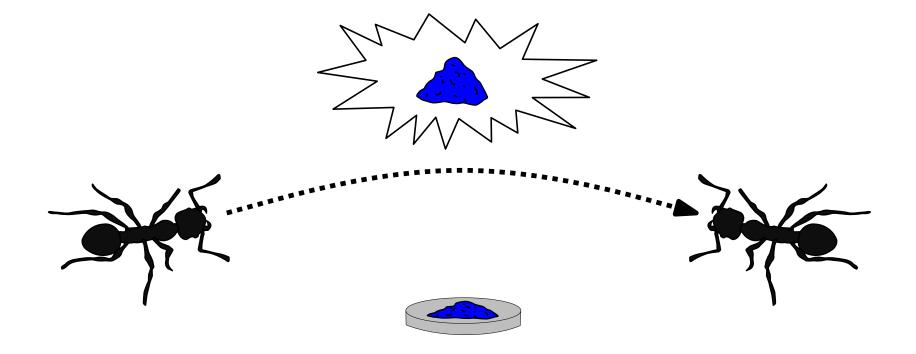


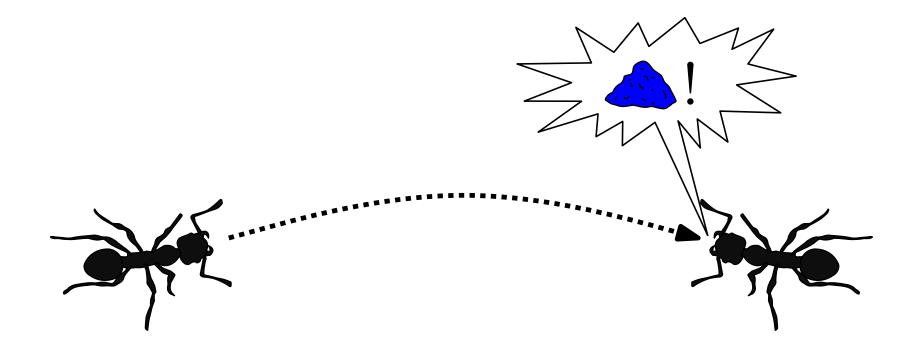
Communication model: \mathcal{PUSH} model [Pittel '87]: at each round each agent can send a bit to another one chosen uniformly at random.

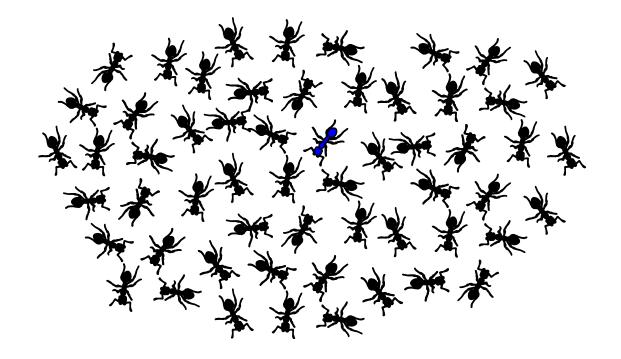






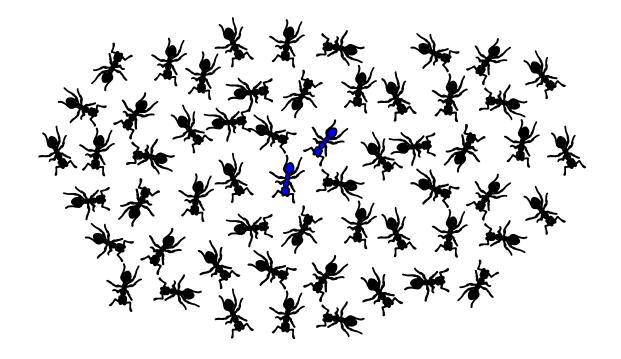






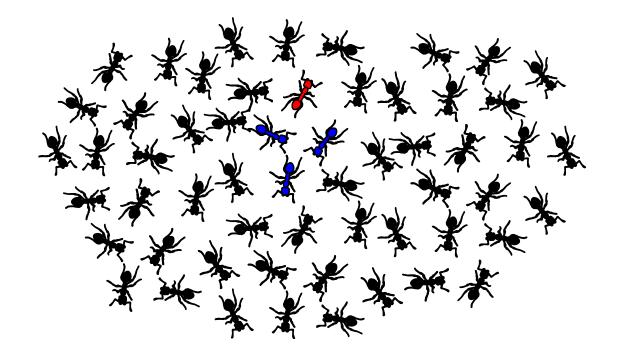
trivial strategy

blue vs red: 1/0



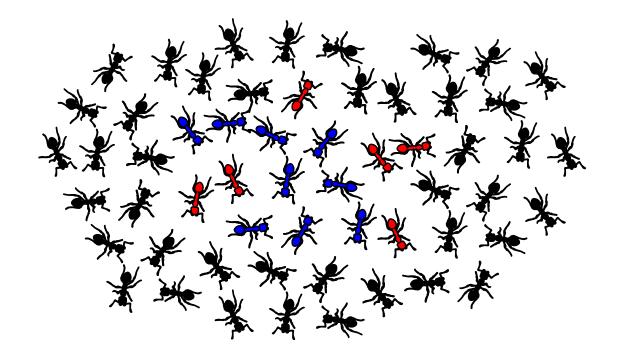
trivial strategy

blue vs red: 2/0



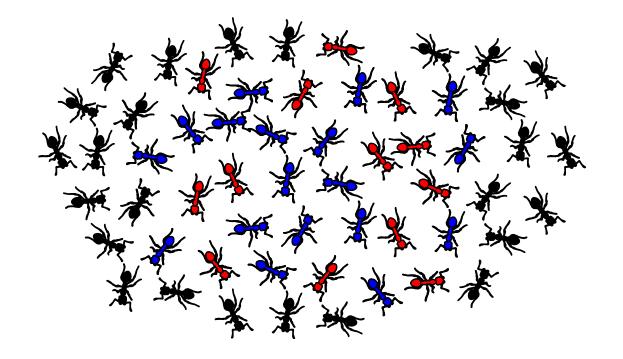
trivial strategy

blue vs red: 3/1



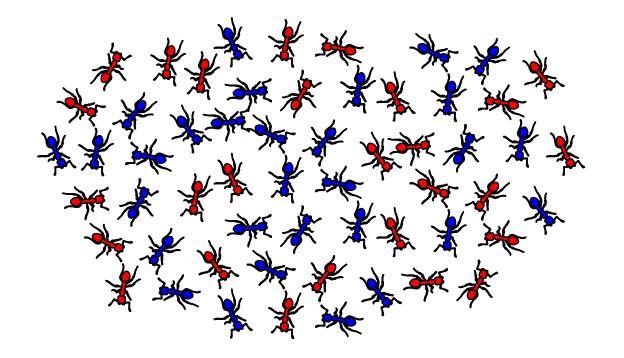
trivial strategy

blue vs red: 9/6 = 1.5



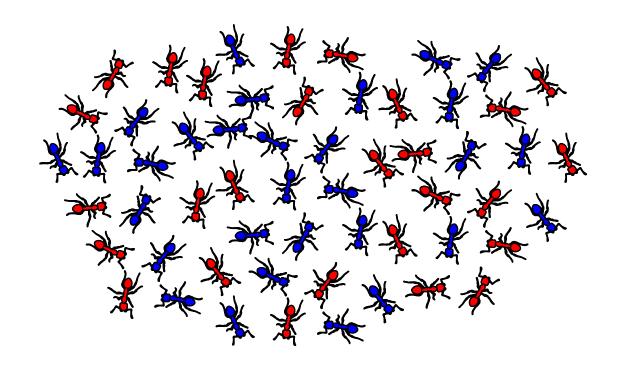
trivial strategy

blue vs red: $18/13 \approx 1.4$

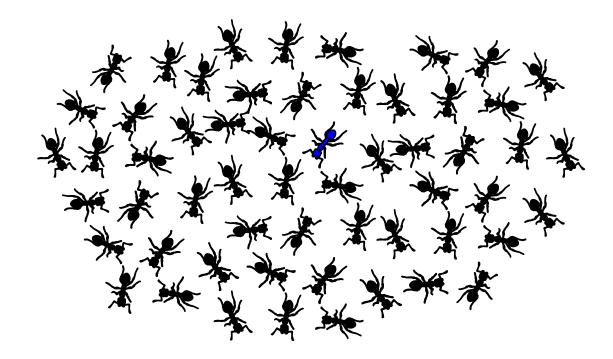


trivial strategy

blue vs red: $35/29 \approx 1.2$

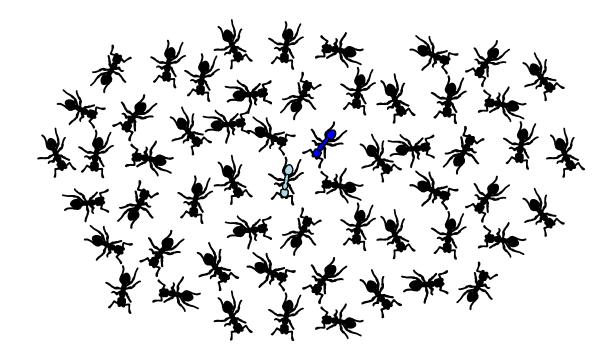


blue vs red: $35/29 \approx 1.2$



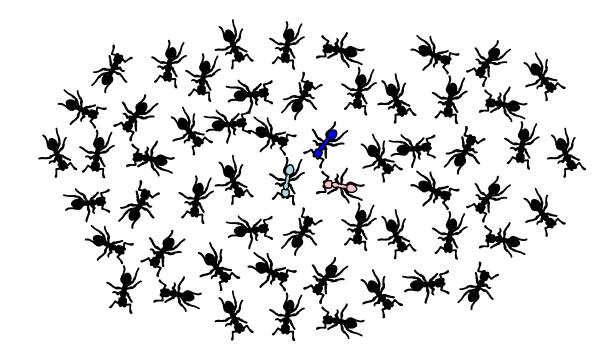
Stage 1: Spreading

blue vs red: 1/0



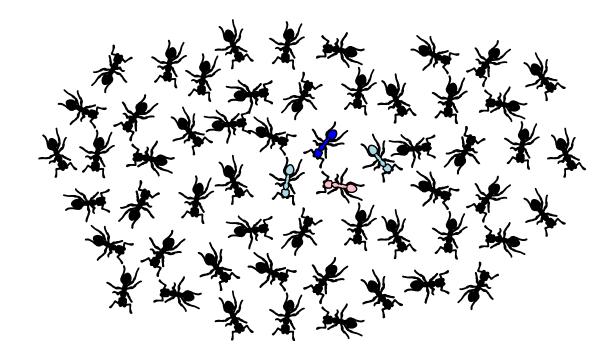
Stage 1: Spreading

blue vs red: 1/0



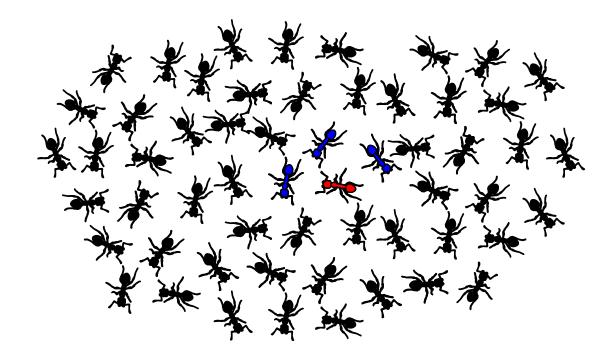
Stage 1: Spreading

blue vs red: 1/0



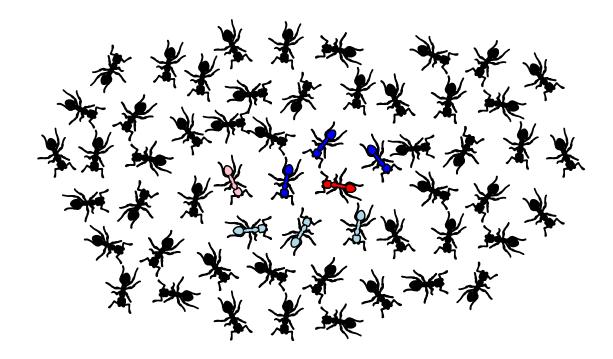
Stage 1: Spreading

blue vs red: 1/0



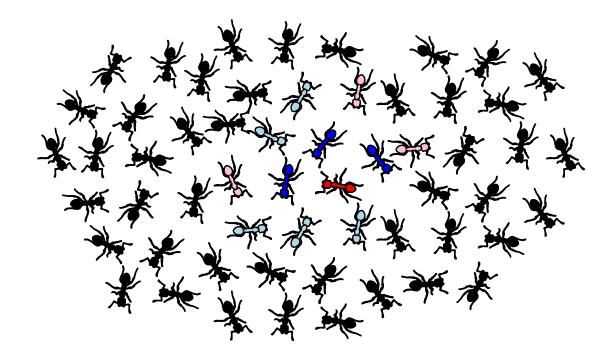
Stage 1: Spreading

blue vs red: 3/1



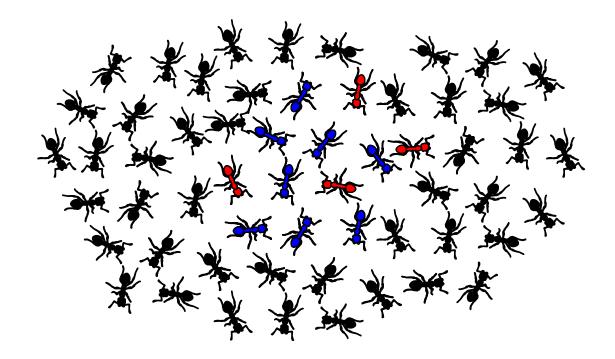
Stage 1: Spreading

blue vs red: 3/1



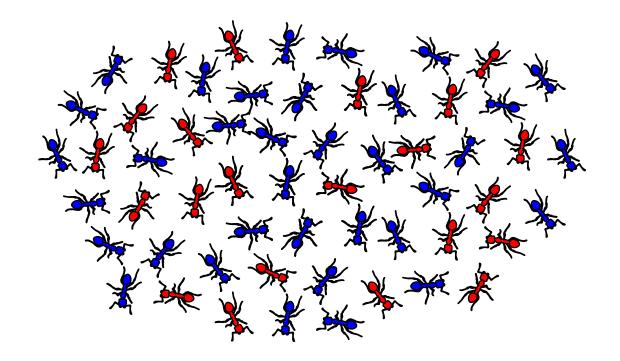
Stage 1: Spreading

blue vs red: 3/1



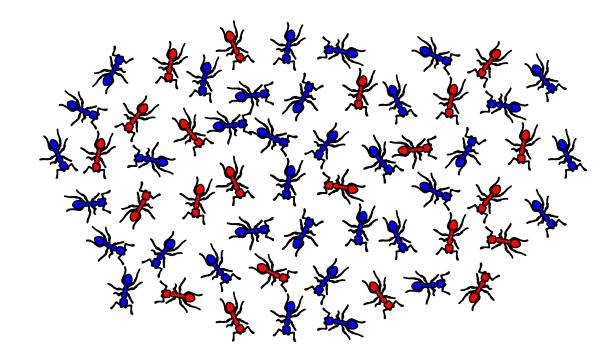
Stage 1: Spreading

blue vs red: 8/4



Stage 1: Spreading

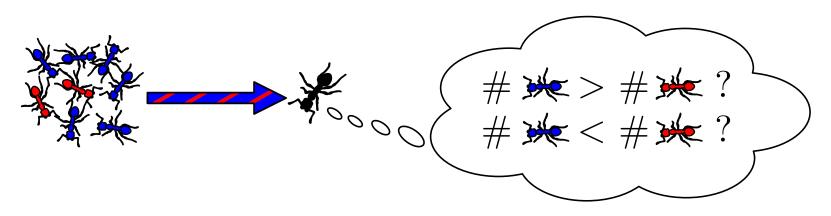
blue vs red: $40/24 \approx 1.7$



Stage 1: Spreading

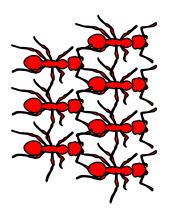
blue vs red: $40/24 \approx 1.7$

Stage 2: Amplifying majority

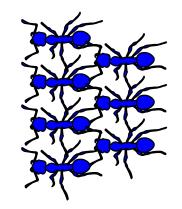


Mathematical Challenges

• Stochastic Dependence

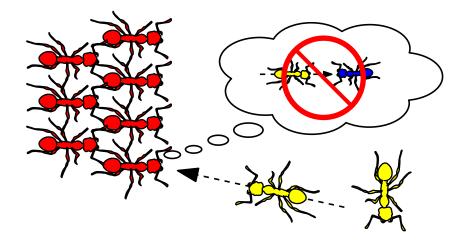


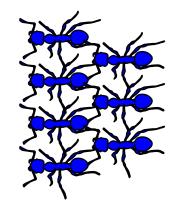




Mathematical Challenges

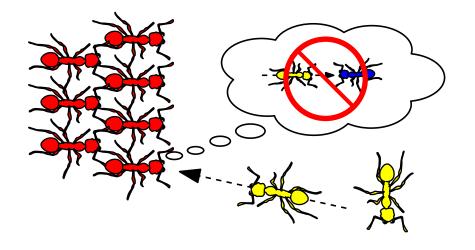
• Stochastic Dependence

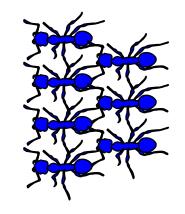




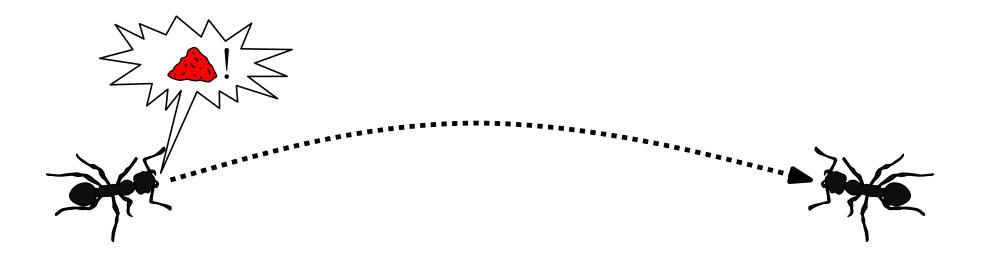
Mathematical Challenges

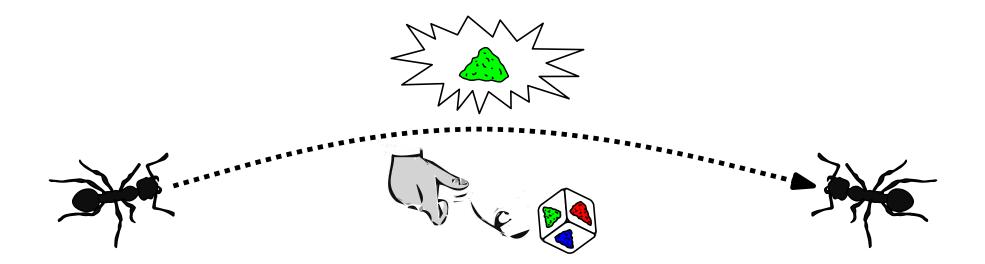
• Stochastic Dependence

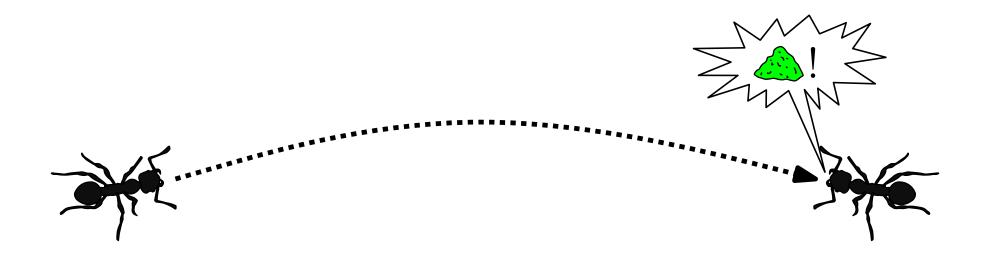


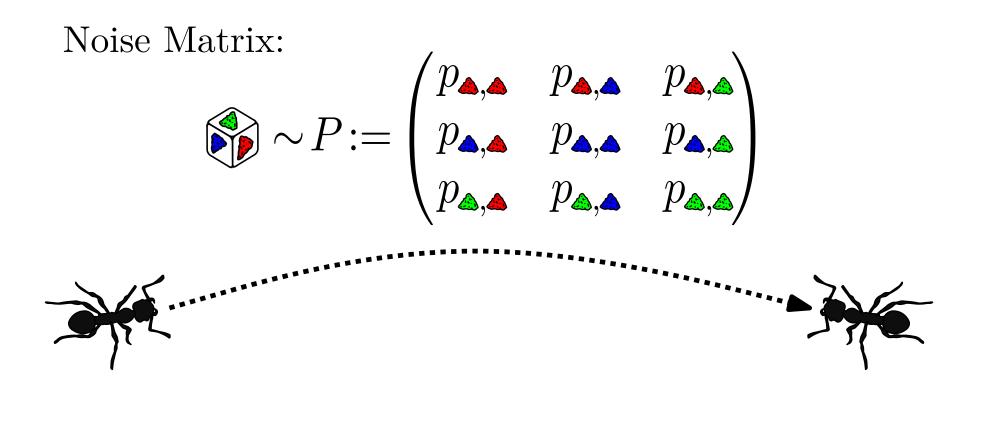


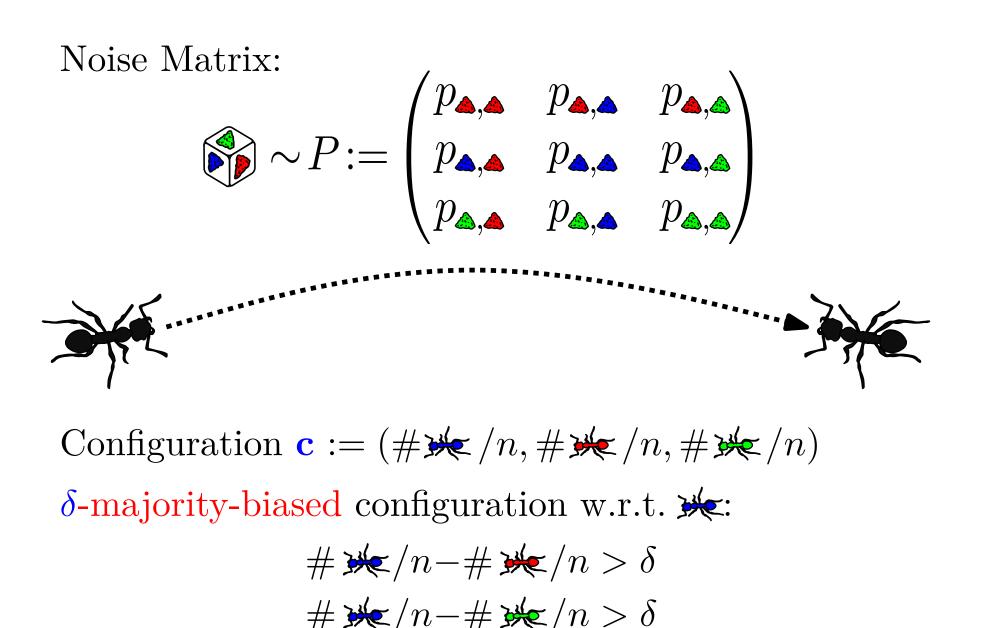
• "Small Deviations" g(t), f(t) << 1 $\Pr(X \ge t) \ge \frac{1}{2} + g(t)$ $\Pr(X \ge t) \le f(t)$



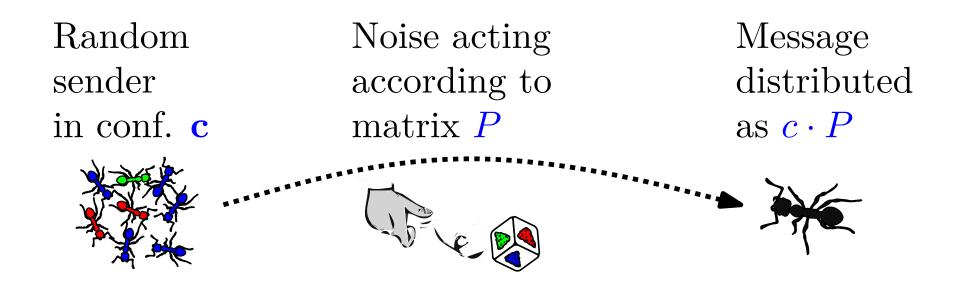




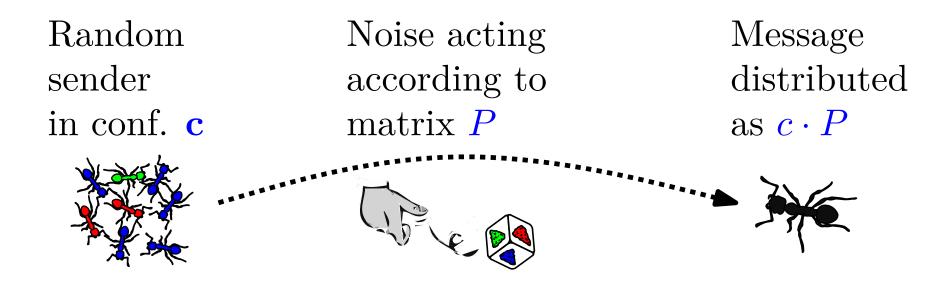




Majority-Preserving Matrix



Majority-Preserving Matrix



 (ε, δ) -majority-preserving noise matrix: $(\mathbf{c}P)_{\diamond} - (\mathbf{c}P)_{\diamond} > \varepsilon \delta$ $(\mathbf{c}P)_{\diamond} - (\mathbf{c}P)_{\diamond} > \varepsilon \delta$

Main Result

Theorem. Let *S* be the initial set of agents with opinions in [k]. Suppose that *S* is $\delta = \Omega(\sqrt{\log n/|S|})$ -majority-biased with $|S| = \Omega(\frac{\log n}{\epsilon^2})$ and the noise matrix *P* is (ϵ, δ) -majority-preserving. Then the plurality consensus problem can be solved in $O(\frac{\log n}{\epsilon^2})$ rounds w.h.p., with $O(\log \log n + \log \frac{1}{\epsilon})$ memory per node.

Main Result

Theorem. Let *S* be the initial set of agents with opinions in [k]. Suppose that *S* is $\delta = \Omega(\sqrt{\log n/|S|})$ -majority-biased with $|S| = \Omega(\frac{\log n}{\epsilon^2})$ and the noise matrix *P* is (ϵ, δ) -majority-preserving. Then the plurality consensus problem can be solved in $O(\frac{\log n}{\epsilon^2})$ rounds w.h.p., with $O(\log \log n + \log \frac{1}{\epsilon})$ memory per node.

 $|S| = 1 \implies$ rumor spreading in $O(\frac{\log n}{\epsilon^2})$ rounds

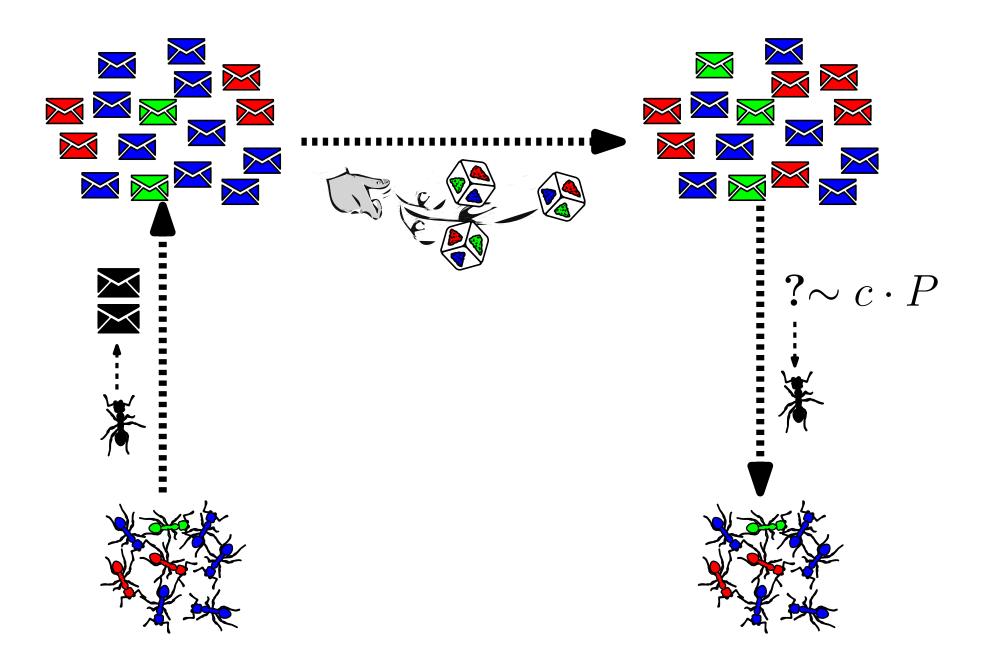
Main Result

Theorem. Let *S* be the initial set of agents with opinions in [*k*]. Suppose that *S* is $\delta = \Omega(\sqrt{\log n/|S|})$ -majority-biased with $|S| = \Omega(\frac{\log n}{\epsilon^2})$ and the noise matrix *P* is (ϵ, δ) -majority-preserving. Then the plurality consensus problem can be solved in $O(\frac{\log n}{\epsilon^2})$ rounds w.h.p., with $O(\log \log n + \log \frac{1}{\epsilon})$ memory per node.

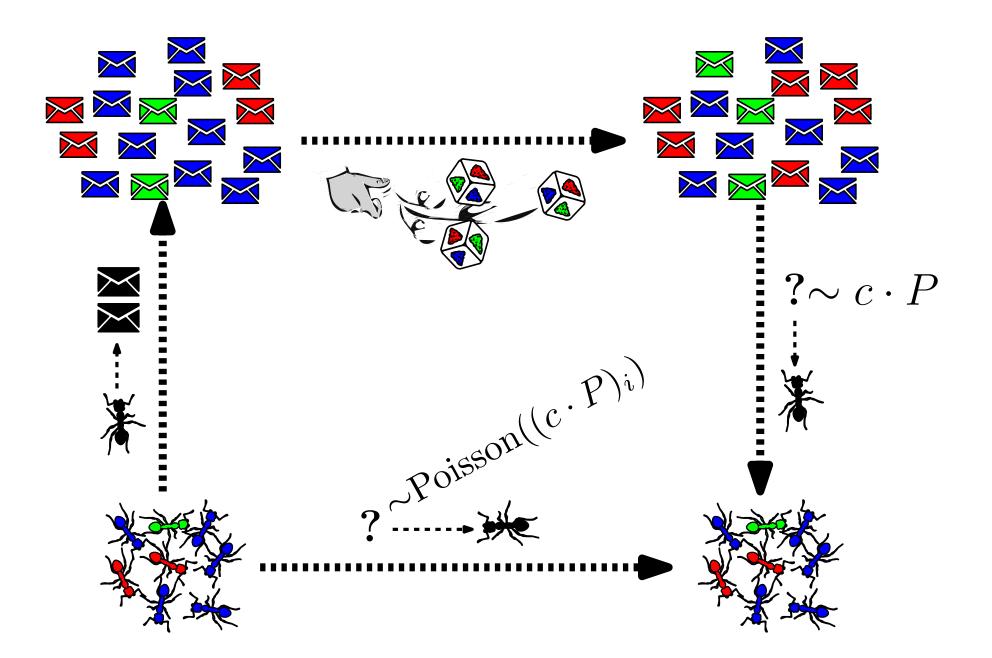
 $|S| = 1 \implies$ rumor spreading in $O(\frac{\log n}{\epsilon^2})$ rounds

$$P = \begin{pmatrix} 1/2 + \varepsilon & 1/2 - \varepsilon \\ 1/2 - \varepsilon & 1/2 + \varepsilon \end{pmatrix} \implies \text{Feinerman et al.}$$

Poisson Approximation



Poisson Approximation



Poisson Approximation

Lemma. balls-in-bins experiment:

- h colored balls are thrown in n bins, h_i balls have color

 $1 \le i \le k,$

- $\{X_{u,i}\}_{u\in\{1,\dots,n\},i\in\{1,\dots,k\}}$ number of i-colored balls that end up in bin u,

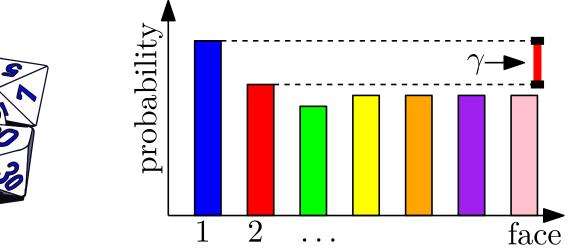
- f non-negative function with $\mathbb{Z}_{\geq 0}$ arguments $\{x_{u,i}\}_{u\in\{1,...,n\},i\in\{1,...,k\}}$ and z, - $\{Y_{u,i}\}_{u\in\{1,...,n\},i\in\{1,...,k\}}$ independent r.v. with $Y_{u,i} \sim \operatorname{Poisson}(h_i/n)$ and Z integer valued r.v. independent from $X_{u,i}$ s and $Y_{u,i}$ s.

$$\mathbb{E}\left[f\left(X_{1,1},...,X_{n,1},X_{n,2},...,X_{n,k},Z\right)\right] \le e^k \sqrt{\prod_i h_i} \mathbb{E}\left[f\left(Y_{1,1},...,Y_{n,1},Y_{n,2},...,Y_{n,k},Z\right)\right].$$

Corollary. Given conf. **c**, if event \mathcal{E} holds in process **P** with prob $1 - n^{-b}$ with $b > (k \log h)/(2 \log n)$, then it holds w.h.p. also in the original process.

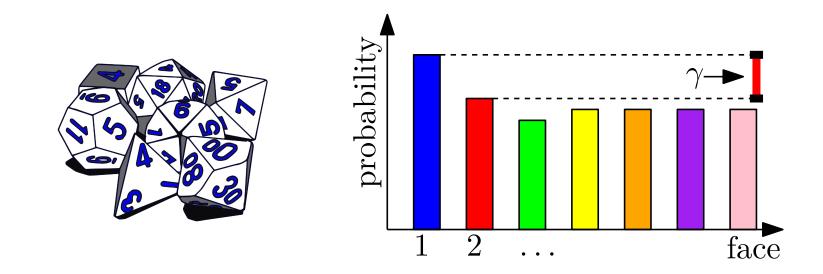
Probability Amplification

A dice with k faces is thrown ℓ times.



Probability Amplification

A dice with k faces is thrown ℓ times.

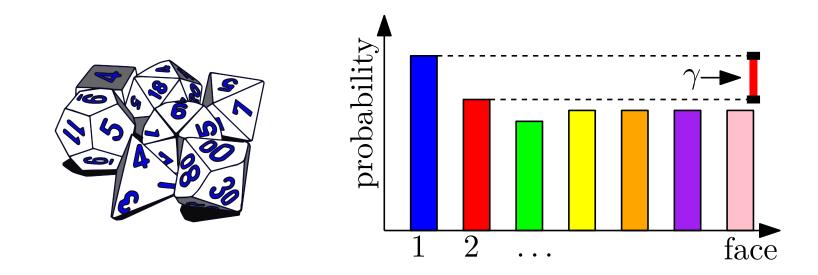


 $\mathcal{M} := \text{most frequent face in the } \ell \text{ throws}$ (breaking ties at random).

For any $j \neq 1$ $\Pr(\mathcal{M}=1) - \Pr(\mathcal{M}=j) \ge \operatorname{const} \cdot \sqrt{\ell} \gamma (1-\gamma^2)^{\frac{\ell-1}{2}}$

Probability Amplification

A dice with k faces is thrown ℓ times.



 $\mathcal{M} := \text{most frequent face in the } \ell \text{ throws}$ (breaking ties at random).

For any $j \neq 1$ $\Pr(\mathcal{M} = 1) - \Pr(\mathcal{M} = j) \geq \operatorname{const} \cdot \sqrt{\ell} \gamma (1 - \gamma^2)^{\frac{\ell - 1}{2}}$ \swarrow open problem: $\operatorname{const} \approx e^{-\Theta(k)}$

Binomial vs Beta

Given $p \in (0, 1)$ and $0 \le j \le \ell$ it holds

$$\begin{aligned} \Pr\left(Bin(n,p) \leq j\right) &= \sum_{j < i \leq \ell} \binom{\ell}{i} p^i \left(1-p\right)^{\ell-i} \\ &= \binom{\ell}{j+1} \left(j+1\right) \int_0^p z^j \left(1-z\right)^{\ell-j-1} dz \\ &= \Pr\left(Beta(n-k,k+1) < 1-p\right). \end{aligned}$$

Binomial vs Beta

Given $p \in (0, 1)$ and $0 \le j \le \ell$ it holds

$$\begin{aligned} \Pr\left(Bin(n,p) \leq j\right) &= \sum_{j < i \leq \ell} \binom{\ell}{i} p^i \left(1-p\right)^{\ell-i} \\ &= \binom{\ell}{j+1} \left(j+1\right) \int_0^p z^j \left(1-z\right)^{\ell-j-1} dz \\ &= \Pr\left(Beta(n-k,k+1) < 1-p\right). \end{aligned}$$

Multinomial vs Dirichlet?