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PULL(h, `) model
[Demers ’88]: at each
round each agent can
observe h other agents
chosen independently and
uniformly at random, and
shows ` bits to her
observers.
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• Parsimonious
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• Uni-directional
(Passive/Active)

• Noisy
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Animal communication:



Dynamics

Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.
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Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.

(in
fo

rm
al

)

Examples of Dynamics

• 3-Median dynamics
• 3-Majority dynamics
• Undecided-state dynamics
• Averaging dynamics
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The Power of Dynamics: Plurality Consensus

3-Median dynamics [Doerr et al. ’11]. Converge to O(
√
n logn)

approximation of median of system in O(logn) rounds w.h.p.,
even if O(

√
n) states are arbitrarily changed at each round

(O(
√
n)-bounded adversary).
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even against o(
√
n/k)-bounded adversary. Without bias,

converges in poly(k). h-majority converges in Ω(k/h2).
Undecided-State dynamics [SODA ’15]. If
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A Global Measure of Bias

1 ≤ md
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Undecided-State dynamics [SODA ’15]. If
majority/second-majority (cmaj/c2ndmaj) is at least 1 + ε,
system converges to plurality within Θ̃(md(c)) rounds w.h.p.
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Noise Matrix:

∼P :=

 
p ,
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p ,

Noisy PULL model: messages are randomly corrupted

FHK ’14: Natural rules efficiently solve rumor spreading
and majority consensus despite noise when

Noise affects animal communication, but animals cannot use
coding theory...

P =
(

1/2 + ε 1/2− ε
1/2− ε 1/2 + ε

)

)
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Majority-Preserving Matrix

[PODC ’16]: Let S initial set of agents with k
opinions. S is δ = Ω(

√
logn/|S|)-majority-biased.

|S| = Ω( logn
ε2 ). P is (ε, δ)-majority-preserving.

Plurality consensus can be solved in O( logn
ε2 ) rounds

w.h.p., with O(log logn+ log 1
ε ) memory per node.
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(ε, δ)-majority-preserving noise matrix:
(cP ) − (cP ) > εδ(cP ) − (cP ) > εδ,
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Dynamics can solve Consensus, Median, Majority,
in robust and fault tolerant ways, but this is trivial
in centralized setting.



The Median, the Mode and... the Mean

Dynamics can solve Consensus, Median, Majority,
in robust and fault tolerant ways, but this is trivial
in centralized setting.

Can dynamics solve a problem non-trivial in
centralized setting?



Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with 2n nodes.
Output: S = arg min

S⊂V
|S|=n

E(S, V − S).

[Garey, Johnson, Stockmeyer ’76]:
Min-Bisection is NP-Complete.



The Stochastic Block Model

Stochastic Block Model (SBM). Two
“communities” of equal size V1 and V2, each edge
inside a community included with probability
p = a

n , each edge across communities included with
probability q = b

n < p.

q
p p
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The Averaging Dynamics

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set value x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.
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Well studied process [Shah ’09]:
• Converges to (weighted) global

average of initial values,
• Convergence time = mixing

time of G,
• Important applications in

fault-tolerant self-stabilizing
consensus.

A = (1((u,v)∈E))u,v∈V
adjacency matrix of G

P = D−1A transition
matrix of random walk

D diagonal matrix of
node degrees in G

Averaging
is a linear
dynamics

x(t) =

x(t) = P · x(t−1) = P t · x(0)

( )
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Community Detection via Averaging Dynamics

t

−1

+1

· · ·
α
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v1, ..., vn eigenvectors of
random walk matrix P :
v1 = 1 = (1, ..., 1)
v2 ≈ χ = (1, ..., 1,−1, ...,−1)

“nice”
graph



Community Detection via Averaging Dynamics

[SODA ’17](Informal). G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of
eigenvalue λ2 of transition matrix of G, and
ii) gap between λ2 and λ = max{λ3, |λn|}
sufficiently large,
then Averaging (approximately) identifies (V1, V2).



Check Out my Thesis!

Thank you!
https://goo.gl/Q0LC6x
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