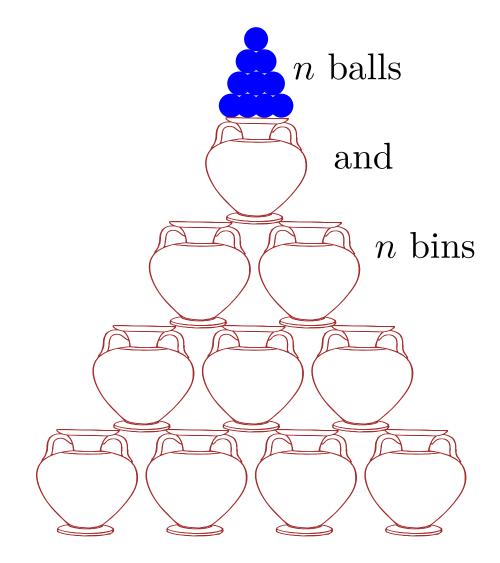
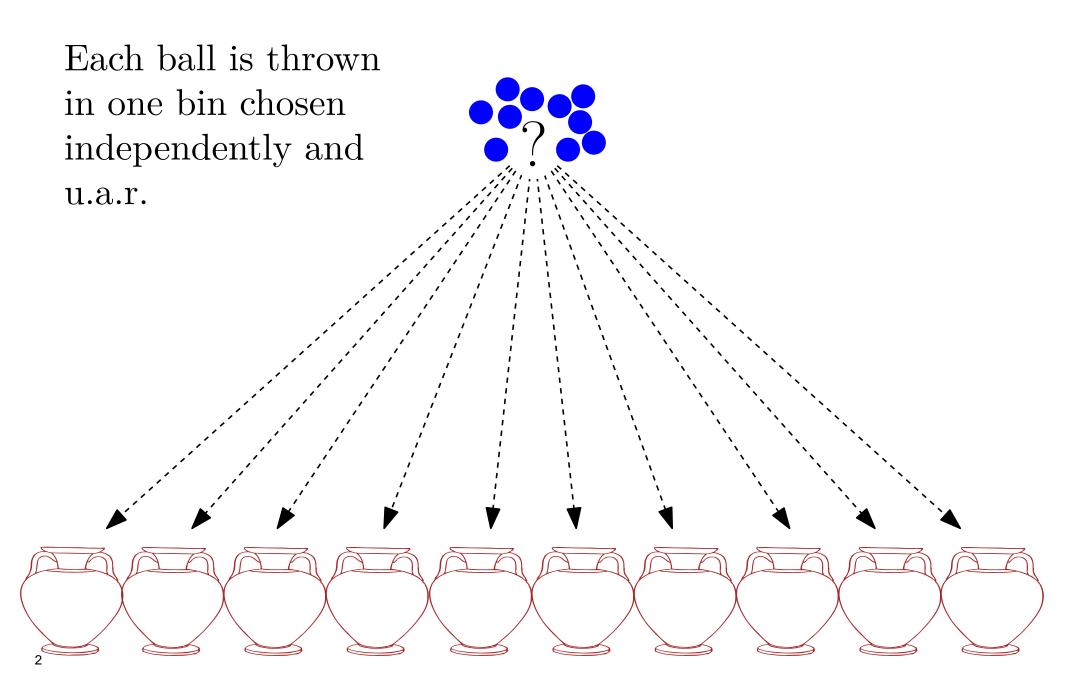
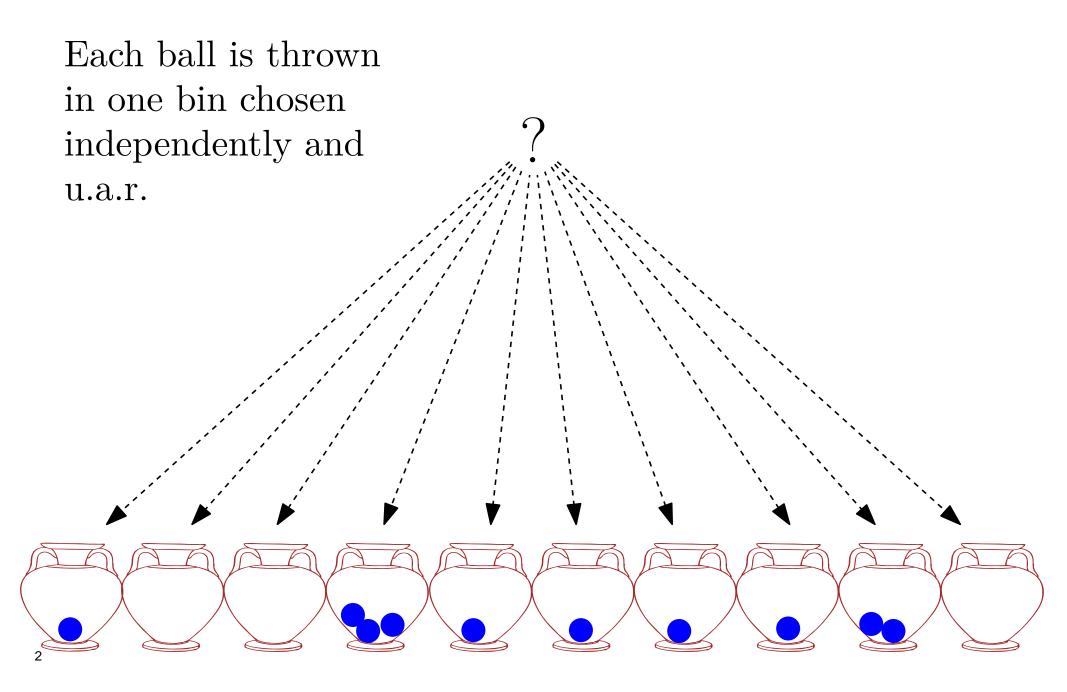
Self-Stabilizing Repeated Balls-into-Bins Emanuele Natale[†] joint work with L. Becchetti[†], A. Clementi^{*}, F. Pasquale^{*} and G. Posta[†]

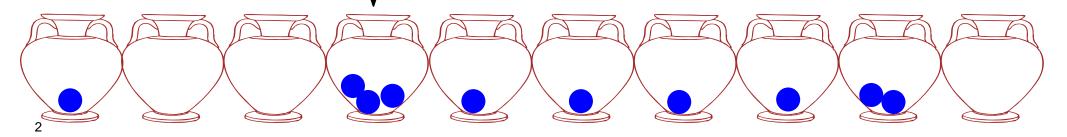
27th ACM Symposium on Parallelism in Algorithms and Architectures Portland, 13-15 June 2015





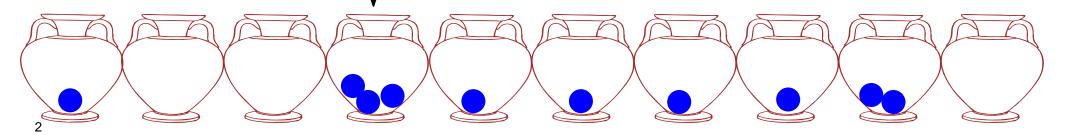


Maximum load: maximum number of balls that end up in any bin.

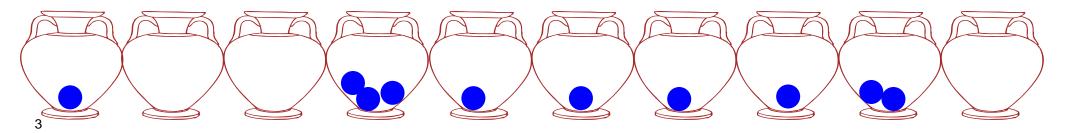


Maximum load: maximum number of balls that end up in any bin.

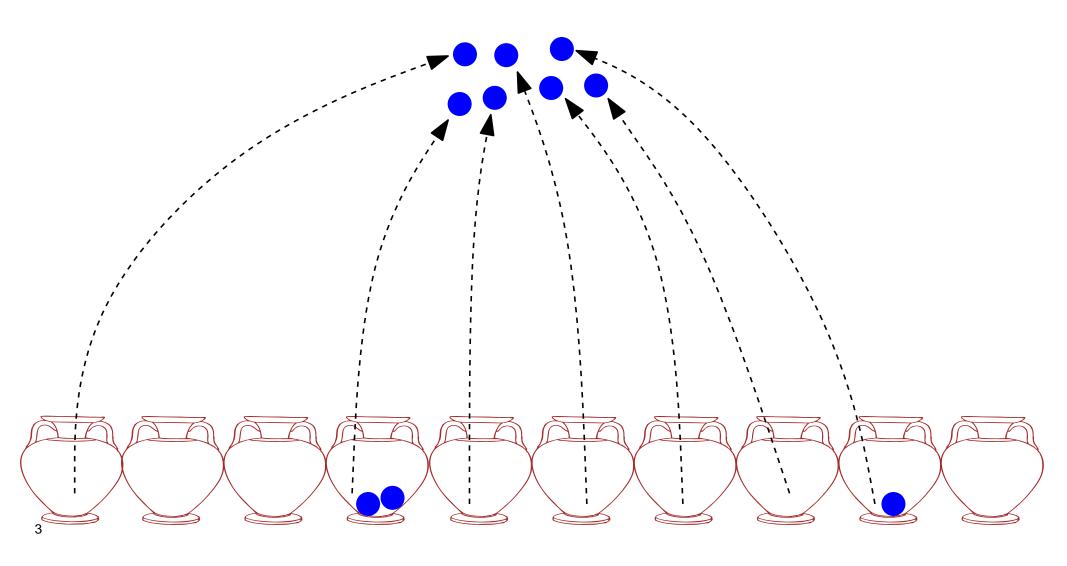
Applications: dynamic resource allocation, hashing, ...



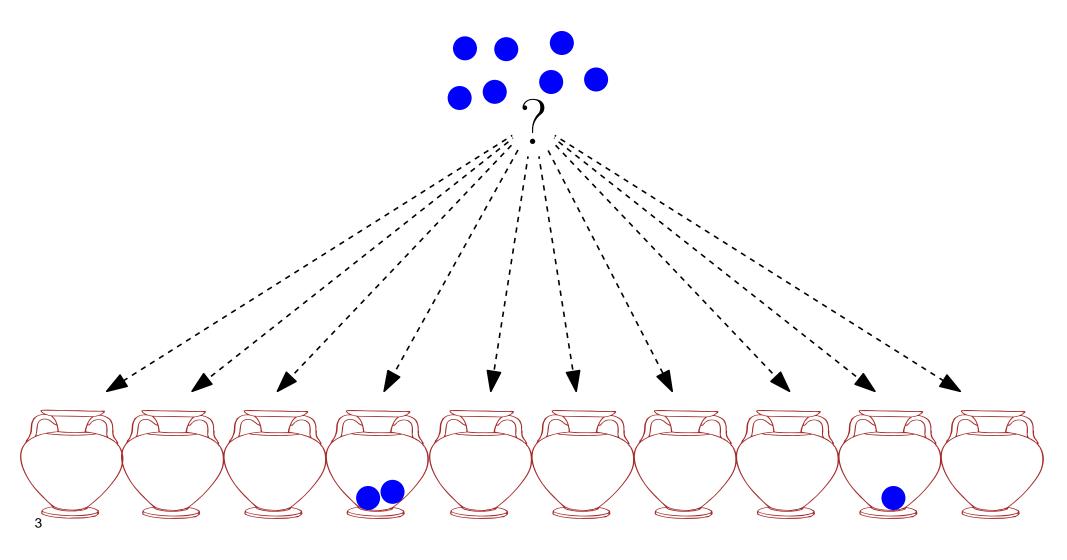
At each round, pick one ball from each non-empty bin...



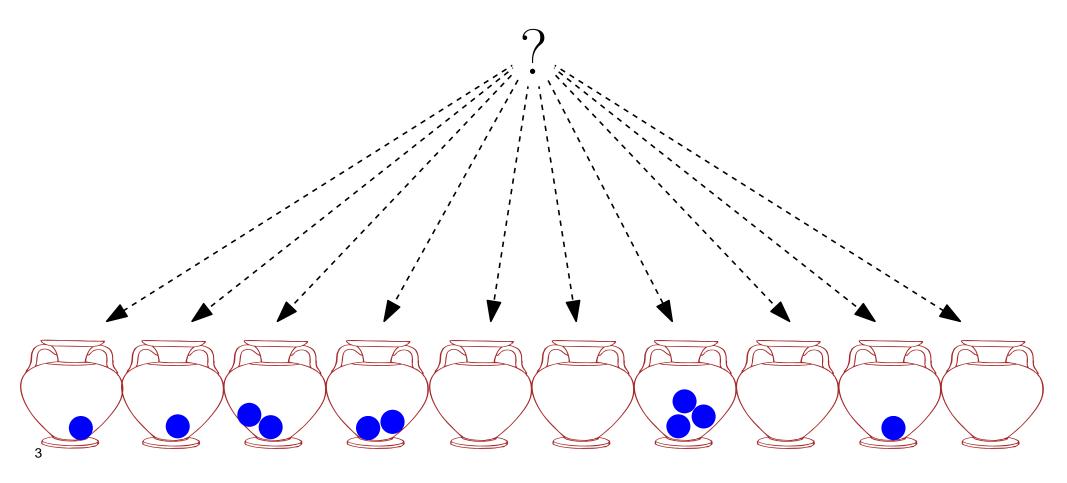
At each round, pick one ball from each non-empty bin...



At each round, pick one ball from each non-empty bin... ...and throw them again u.a.r.



At each round, pick one ball from each non-empty bin... ...and throw them again u.a.r.



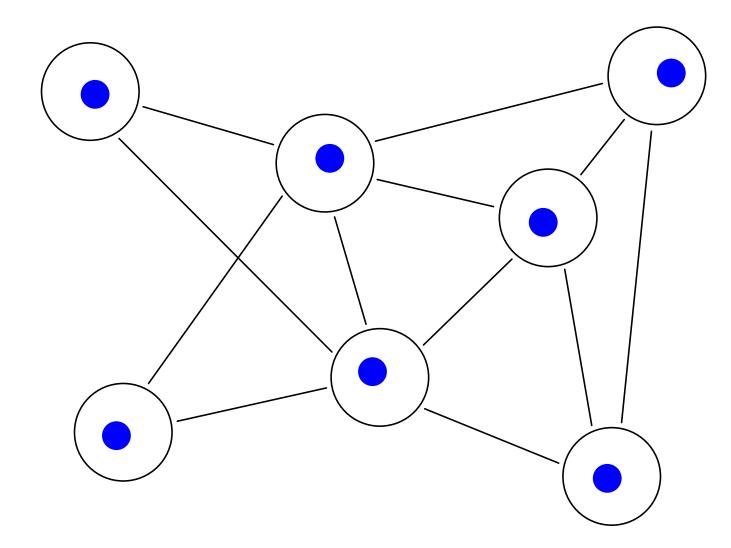
At each round, pick one ball from each non-empty bin... ...and throw them again u.a.r.

Max. load: max. number of balls in any bin.

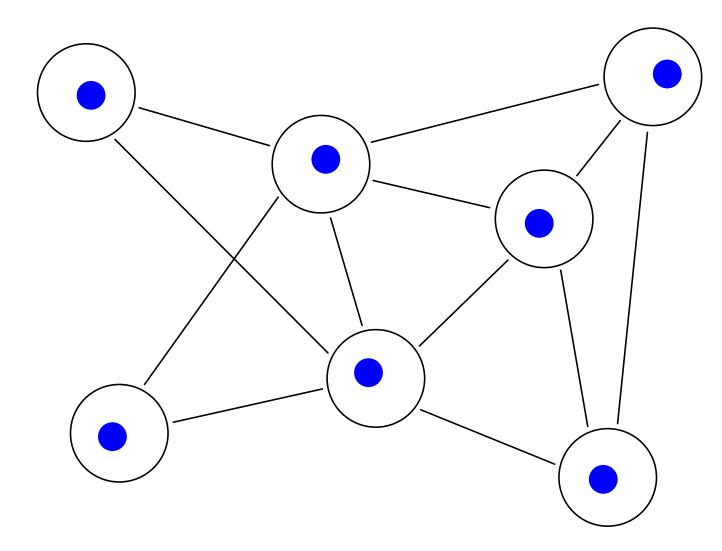
Our Contribution

From any configuration, in O(n) rounds the process reaches a conf. with max. load $O(\log n)$ w.h.p. and, from any conf. with max. load $O(\log n)$, the max. load keeps $O(\log n)$ for poly(n) rounds w.h.p.

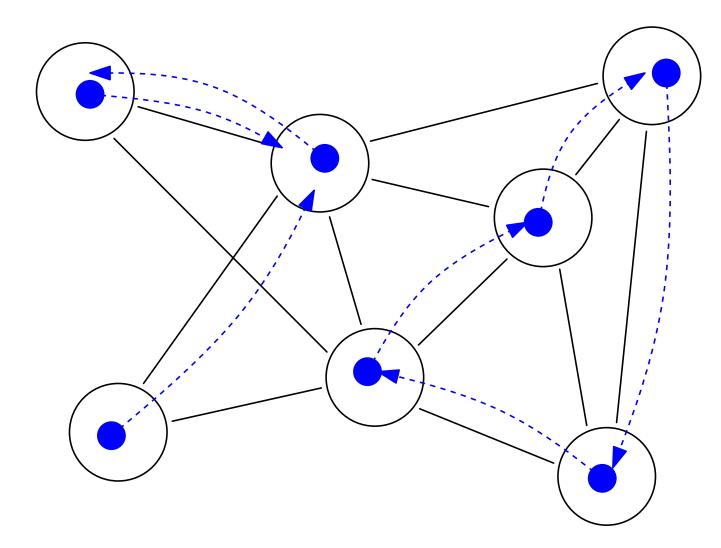
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



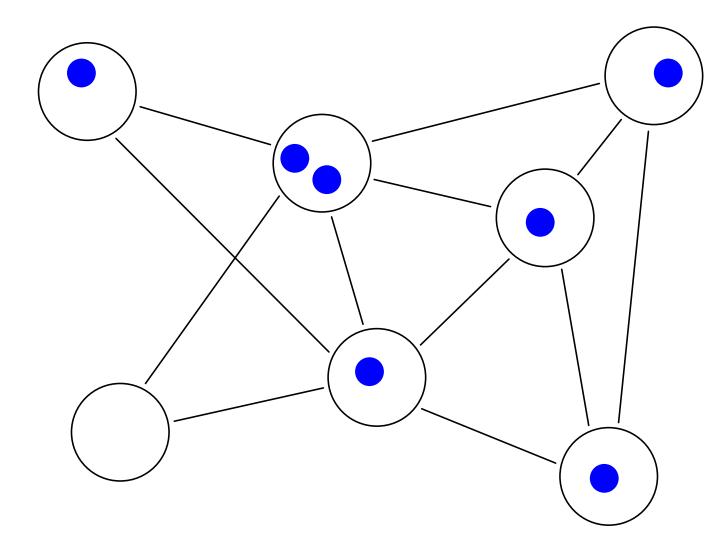
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



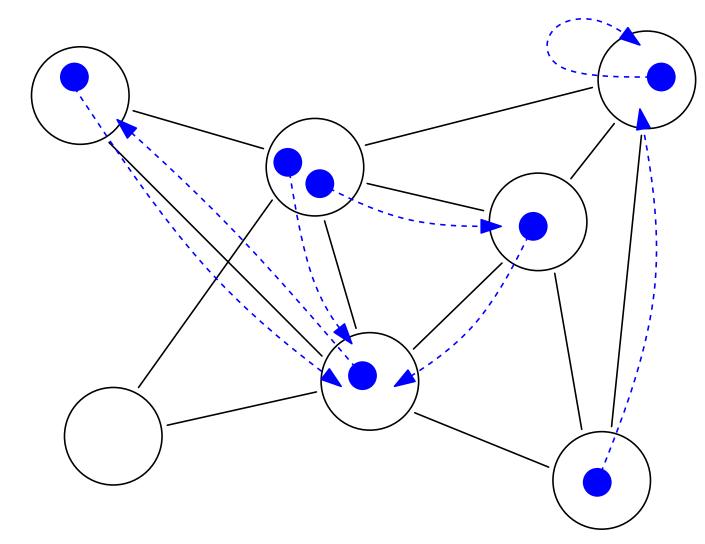
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



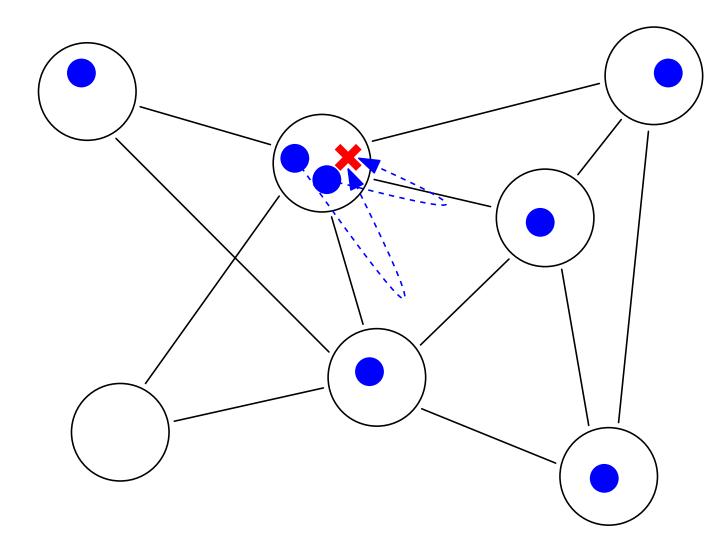
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



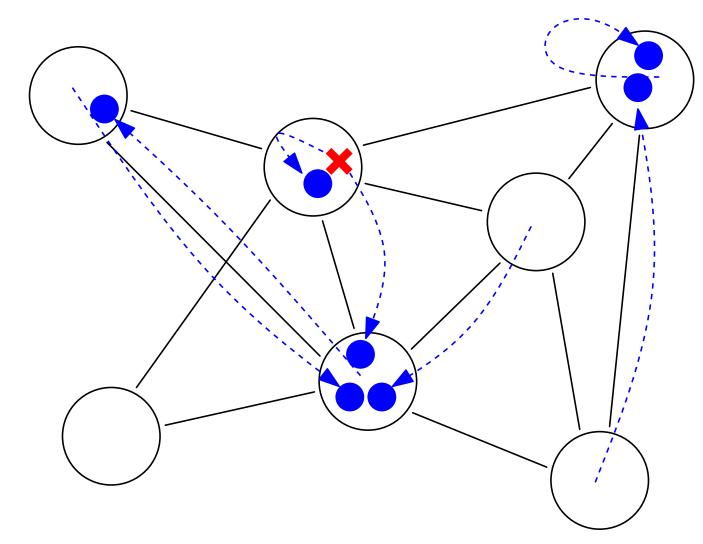
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



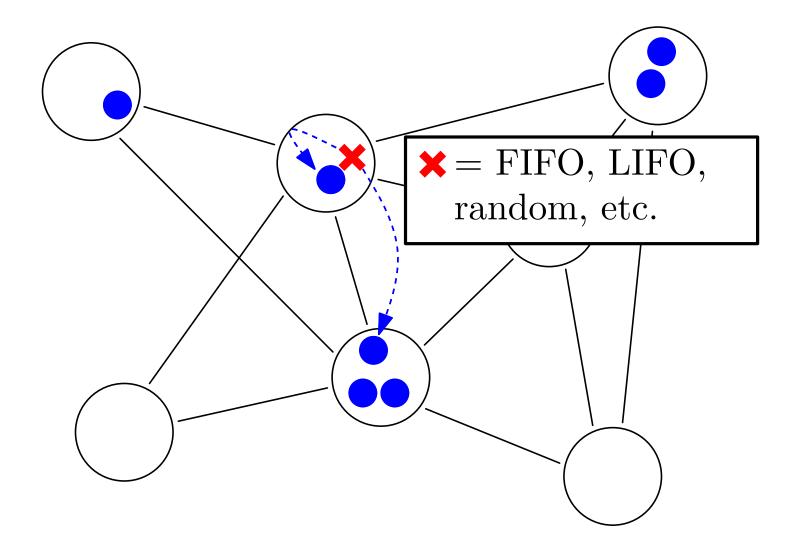
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



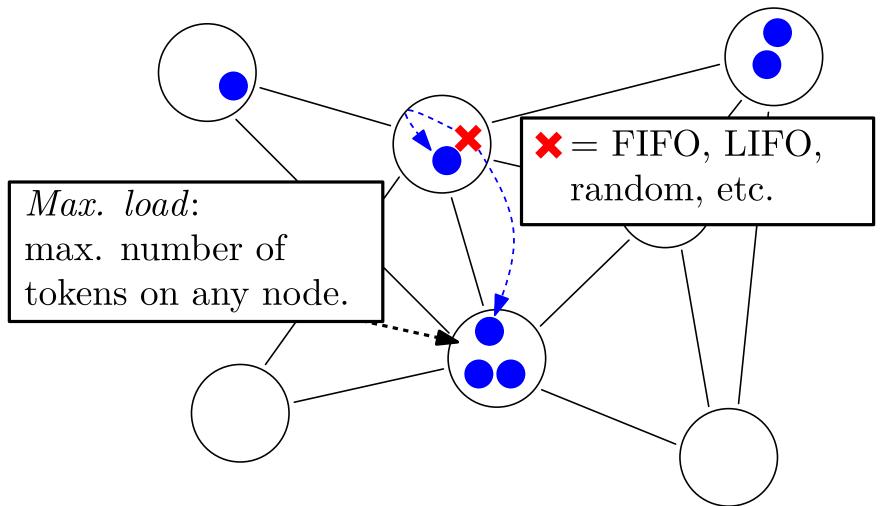
 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



 \mathcal{GOSSIP} Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



GOSSIP Model [Censor-Hillel et al., STOC '12]: nodes contact or call only one neighbor at each round.



Some Related Work

Information exchange in phone-call model [Berenbrink et al. 2010, Elsässer et al. 2015]: analysis for polylog(n) rounds.

Some Related Work

Information exchange in phone-call model [Berenbrink et al. 2010, Elsässer et al. 2015]: analysis for polylog(n) rounds.

Mixing time on regular expanders [Becchetti et al. 2015]: maximum load \sqrt{t} (t rounds).

Some Related Work

Information exchange in phone-call model [Berenbrink et al. 2010, Elsässer et al. 2015]: analysis for polylog(n) rounds.

Mixing time on regular expanders [Becchetti et al. 2015]: maximum load \sqrt{t} (t rounds).

Closed Jackson networks in queueing theory: asynchronous version of \mathcal{GOSSIP} r.w.s (admits closed form solution).

Our Contribution

From any configuration, in O(n) rounds the process reaches a conf. with max. load $O(\log n)$ w.h.p. and, from any conf. with max. load $O(\log n)$, the max. load keeps $O(\log n)$ for poly(n) rounds w.h.p.

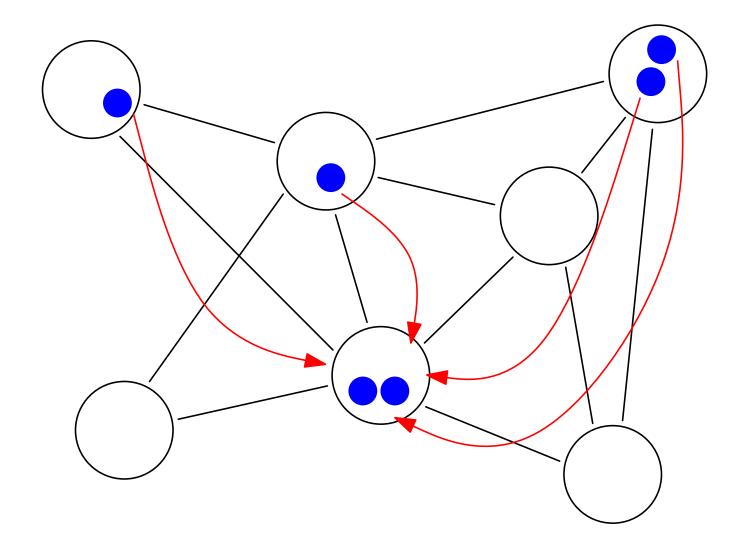
Our Contribution

From any configuration, in O(n) rounds the process reaches a conf. with max. load $O(\log n)$ w.h.p. and, from any conf. with max. load $O(\log n)$, the max. load keeps $O(\log n)$ for poly(n) rounds w.h.p.

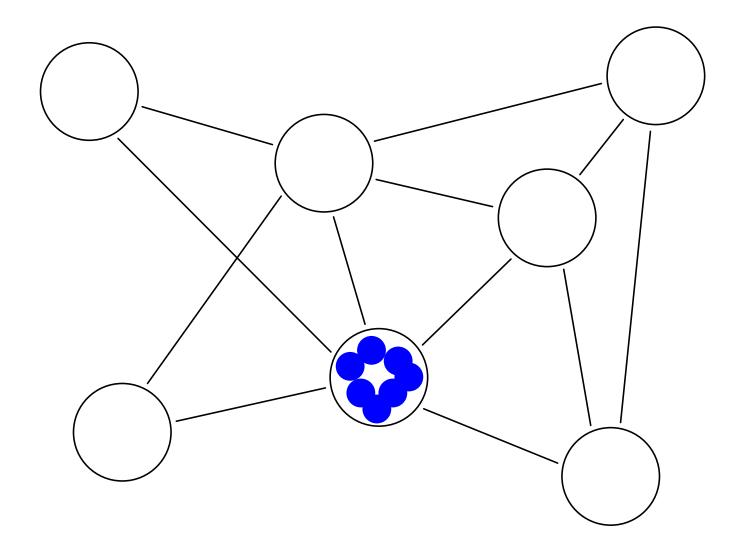
Corollary

After at most $\mathcal{O}(n)$ rounds the max. load of n \mathcal{GOSSIP} r.w.s on *n*-node complete graph is $\mathcal{O}(\log n)$ w.h.p., and keeps $\mathcal{O}(\log n)$ for poly(*n*) rounds.

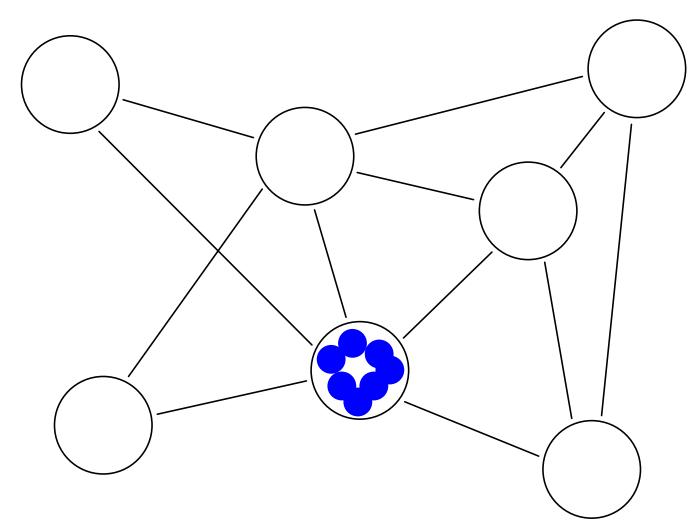
Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



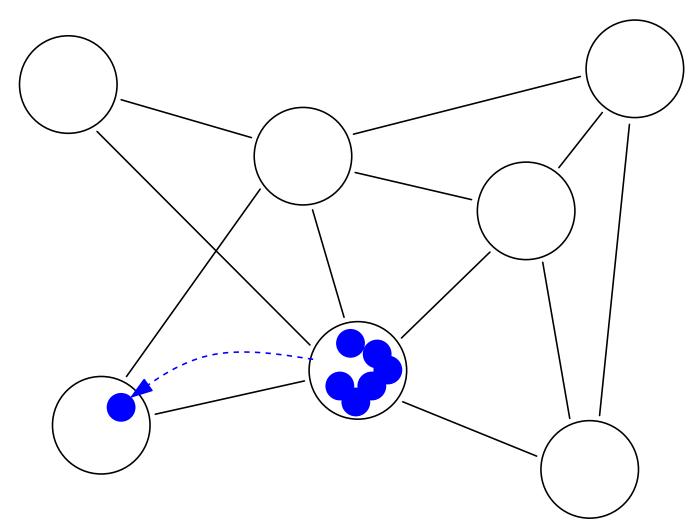
Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



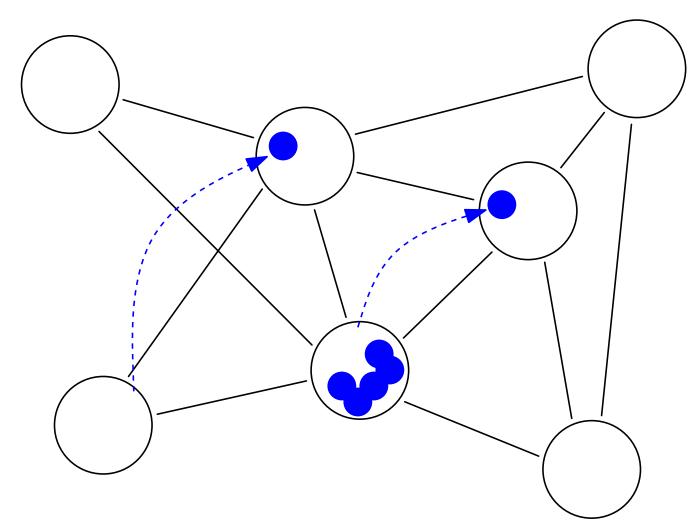
Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



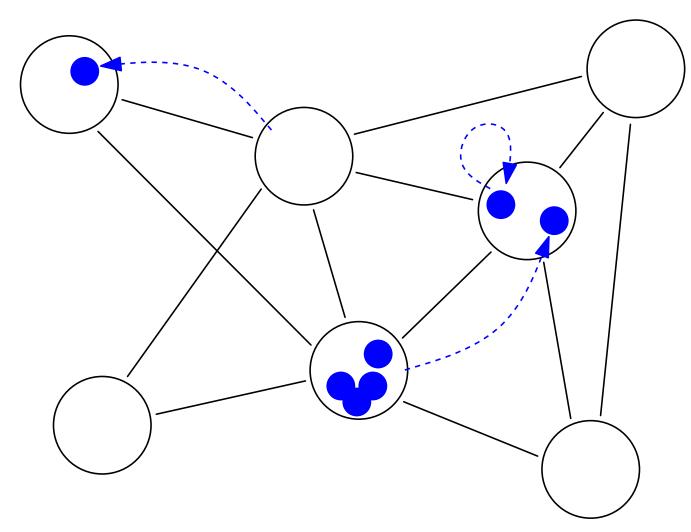
Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



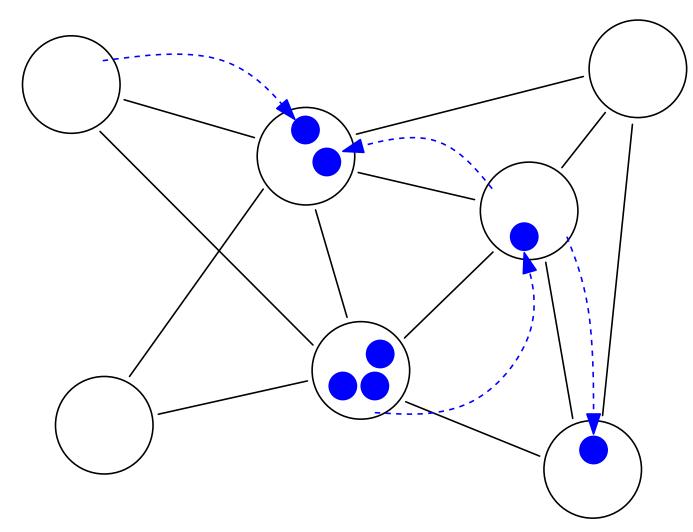
Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



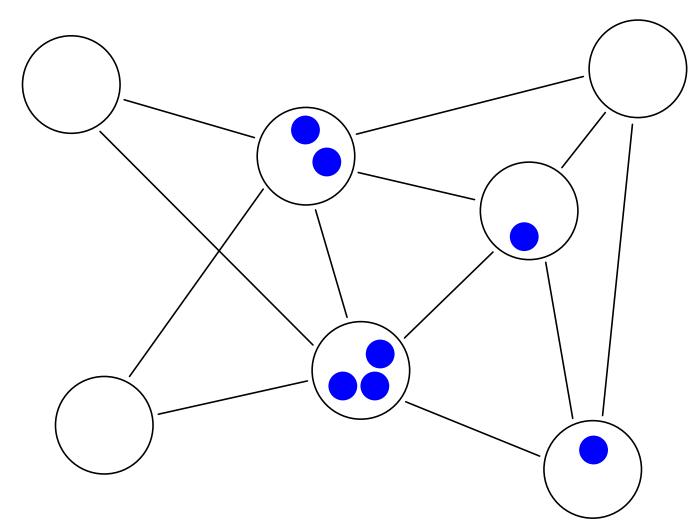
Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])



Tasks Assignment in the \mathcal{GOSSIP} Model

Task assignment in mutual exclusion: Processors have to process the task, the task can be processed by only one processor at a time.

Tasks Assignment in the \mathcal{GOSSIP} Model

Task assignment in mutual exclusion: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Tasks Assignment in the \mathcal{GOSSIP} Model

Task assignment in mutual exclusion: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Random walks strategies

(Parallel) cover time: First round s.t. *each* task has been processed by each processor.

Tasks Assignment in the \mathcal{GOSSIP} Model

Task assignment in mutual exclusion: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Random walks strategies What is the cover time of $n \mathcal{GOSSIP}$ random walks?

(Parallel) cover time: First round s.t. *each* task has been processed by each processor.

Tasks Assignment in the \mathcal{GOSSIP} Model

Task assignment in mutual exclusion: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

What is the cover Random walks time of $n \mathcal{GOSSIP}$ strategies random walks? Corollary (Parallel) cover time: Cover time of nFirst round s.t. each GOSSIP r.w.s on task has been processed *n*-node complete graph is by each processor. $\mathcal{O}(n\log^2 n)$ w.h.p.

9

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

...?

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

A coupling "w.h.p.": the tetris process

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

A coupling "w.h.p.": the tetris process

 $M_t^{(RBB)} := \text{time } t \text{ max. load in repeated b.i.b.}$ $M_t^{(T)} := \text{time } t \text{ max. load in tetris proc.}$

$$\Pr(M_t^{(RBB)} \ge k) \le \Pr(M_t^{(T)} \ge k) + t \cdot e^{-\Theta(n)}$$

Lemma At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Proof $a := |\{\text{empty bins}\}|, b := |\{\text{bins with 1 ball}\}|,$ $X := |\{\text{new empty bins}\}|$ 1. $\mathbb{E}[X] = (a+b)(1-1/n)^{n-a}$

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Proof $a := |\{\text{empty bins}\}|, b := |\{\text{bins with 1 ball}\}|,$ $X := |\{\text{new empty bins}\}|$ 1. $\mathbb{E}[X] = (a+b)(1-1/n)^{n-a}$ 2. $n - (a+b) \le a \implies \mathbb{E}[X] \ge (1+\epsilon)\frac{n}{4}$

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Proof $a := |\{\text{empty bins}\}|, b := |\{\text{bins with 1 ball}\}|,$ $X := |\{\text{new empty bins}\}|$ 1. $\mathbb{E}[X] = (a+b)(1-1/n)^{n-a}$ 2. $n - (a+b) \le a \implies \mathbb{E}[X] \ge (1+\epsilon)\frac{n}{4}$ 3. Chernoff bound (negative association)

Tetris Process

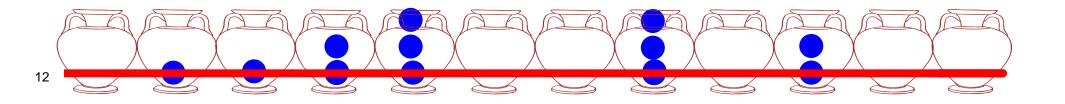
1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.



Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling Step 1: Same as rep. b.i.b.



Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling Step 1: Same as rep. b.i.b.



Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling

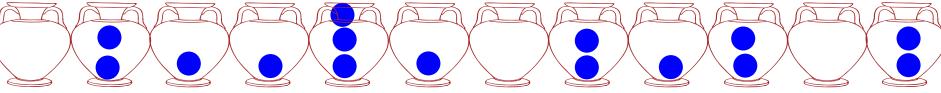
Step 1: Same as rep. b.i.b. Step 2: Let k := non-empty bins in rep. b.i.b. If k > 3n/4 then tetris \perp rep. b.i.b. Else throw the first k balls in the same bin of rep. b.i.b., and the others u.a.r.

Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling

Step 1: Same as rep. b.i.b. Step 2: Let k := non-empty bins in rep. b.i.b. If k > 3n/4 then tetris \perp rep. b.i.b. Else throw the first k balls in the same bin of rep. b.i.b., and the others u.a.r.

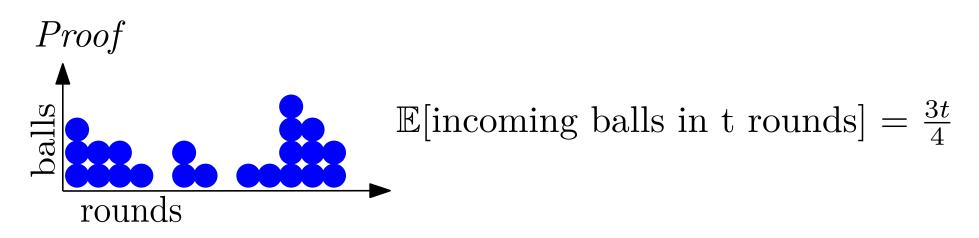


Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

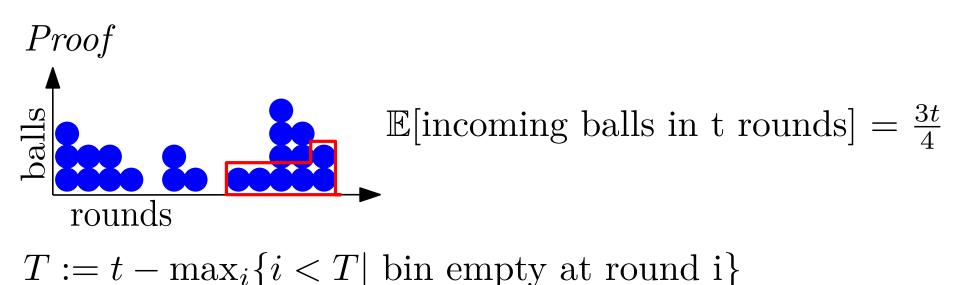
Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.



Theorem

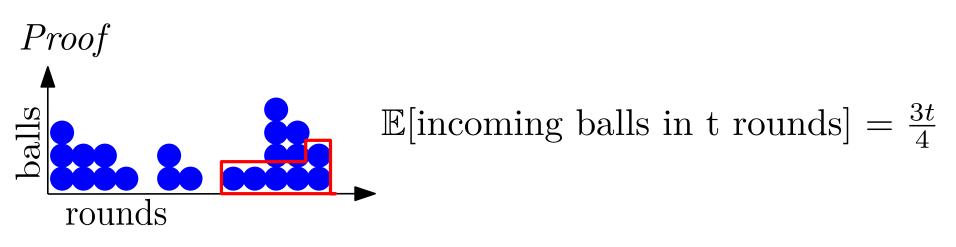
The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.



For each bin: load k at round $t \implies$ received k + T balls

Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.



 $T := t - \max_i \{i < T | \text{ bin empty at round } i\}$ For each bin: load k at round $t \implies$ received k + T balls

Lemma

From any configuration, every bin in the tetris proc. is empty at least once every 5n rounds w.h.p.

Open Questions

GOSSIP random walks Maximum load on other topologies? On regular graphs? On the ring?

Open Questions

GOSSIP random walks Maximum load on other topologies? On regular graphs? On the ring?

Repeated balls-into-bins Maximum load of repeated balls-into-bins with $\omega(n)$ balls? $\Theta(n \log n)$ balls?

Thank You!

Self-stabilization, with high probability

 $\{legitimate states\} \subseteq \{states of the system\}$

A system is self-stabilizing if:

- Starting from any state, reaches a *legitimate* state.
- If in a *legitimate* state, visits only *legitimate* states.

Self-stabilization, with high probability

 $\{legitimate states\} \subseteq \{states of the system\}$

A system is self-stabilizing w.h.p. if:

- Starting from any state, reaches a *legitimate* state w.h.p.
- Adversary. resilient - If in a *legitimate* state, visits only *legitimate* states for poly(n) rounds w.h.p.

Here: legitimate = maximum load $\mathcal{O}(\log n)$