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Balls-into-Bins

Maximum load: maximum number of
balls that end up in any bin.

Applications: dynamic resource
allocation, hashing, ...
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Repeated Balls-into-Bins

Max. load: max. number
of balls in any bin.

At each round, pick one ball from each non-empty bin...
...and throw them again u.a.r.
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Our Contribution

From any configuration, in O(n) rounds the
process reaches a conf. with max. load O(logn)
w.h.p. and, from any conf. with max. load
O(logn), the max. load keeps O(logn) for
poly(n) rounds w.h.p.
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GOSSIP Random Walks

n tokens perform parallel r.w.s on a n-nodes network

GOSSIP Model [Censor-Hillel et al., STOC ’12]: nodes
contact or call only one neighbor at each round.

= FIFO, LIFO,
random, etc.Max. load:

max. number of
tokens on any node.
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Some Related Work

Information exchange in phone-call model
[Berenbrink et al. 2010, Elsässer et al. 2015]:
analysis for polylog(n) rounds.



6

Some Related Work

Mixing time on regular expanders
[Becchetti et al. 2015]:
maximum load

√
t (t rounds).

Information exchange in phone-call model
[Berenbrink et al. 2010, Elsässer et al. 2015]:
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Some Related Work

Mixing time on regular expanders
[Becchetti et al. 2015]:
maximum load

√
t (t rounds).

Information exchange in phone-call model
[Berenbrink et al. 2010, Elsässer et al. 2015]:
analysis for polylog(n) rounds.

Closed Jackson networks in queueing theory:
asynchronous version of GOSSIP r.w.s
(admits closed form solution).
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Our Contribution

From any configuration, in O(n) rounds the
process reaches a conf. with max. load O(logn)
w.h.p. and, from any conf. with max. load
O(logn), the max. load keeps O(logn) for
poly(n) rounds w.h.p.

Corollary
After at most O(n) rounds the max. load of n
GOSSIP r.w.s on n-node complete graph is O(logn)
w.h.p., and keeps O(logn) for poly(n) rounds.

Repeated n balls in n bins =
n GOSSIP r.w.s on n-node complete graph

(with loops)
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Tasks Assignment in the GOSSIP Model

(Parallel) cover time:
First round s.t. each
task has been processed
by each processor.

What is the cover
time of n GOSSIP
random walks?

Random walks
strategies

=⇒

Task assignment in mutual exclusion:
Processors have to process the tasks, the tasks can
be processed by only one processor at a time.

=⇒

Corollary
Cover time of n
GOSSIP r.w.s on
n-node complete graph is
O(n log2 n) w.h.p.

=⇒
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The Infamous Stochastic Dependence

Stochastic dependence in balls-into-bins:
negative association,
Poisson approximation...

Stochastic dependence in repeated balls-into-bins:
...?

A coupling “w.h.p.”: the tetris process

M
(RBB)
t := time t max. load in repeated b.i.b.

M
(T )
t := time t max. load in tetris proc.

Pr(M (RBB)
t ≥ k) ≤ Pr(M (T )

t ≥ k) + t · e−Θ(n)
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Analysis: Empty Bins

Lemma
At the next round |{empty bins}|≥n4 w.h.p.

Corollary
At the next round |{thrown balls}|≤3n

4 w.h.p.

Proof
a := |{empty bins}|, b := |{bins with 1 ball}|,
X := |{new empty bins}|
1. E[X] = (a+ b)(1− 1/n)n−a

2. n− (a+ b) ≤ a =⇒ E[X] ≥ (1 + ε) n
4

3. Chernoff bound (negative association)
�
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Analysis: Maximum Load

Lemma
From any configuration, every bin in the tetris
proc. is empty at least once every 5n rounds w.h.p.

Theorem
The max. load of the tetris process is O(logn) for
poly(n) rounds w.h.p.

Proof

rounds

ba
lls E[incoming balls in t rounds] = 3t

4

For each bin: load k at round t =⇒ received k+ T balls
T := t−maxi{i < T | bin empty at round i}

�
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Maximum load on other topologies?

On regular graphs?
On the ring?
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Open Questions

GOSSIP random walks
Maximum load on other topologies?

On regular graphs?
On the ring?

Repeated balls-into-bins
Maximum load of repeated

balls-into-bins with ω(n) balls?
Θ(n logn) balls?
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Thank You!
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Self-stabilization, with high probability

A system is self-stabilizing if:
- Starting from any state,

reaches a legitimate state.
- If in a legitimate state,

visits only legitimate states.

{legitimate states} ⊆ {states of the system}
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Self-stabilization, with high probability

A system is self-stabilizing w.h.p. if:
- Starting from any state,

reaches a legitimate state w.h.p.
- If in a legitimate state,

visits only legitimate states for poly(n) rounds w.h.p.

Here: legitimate = maximum load O(logn)

{legitimate states} ⊆ {states of the system}

Adversary-
resilient
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