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The Plurality Consensus Problem

® \We have a set of nodes o
each having one color

out of {1,..., k}. ® O
® There is a plurality of ®
nodes having the same ®
color.
® \We want to reach ® ® ® o

consensus on the
plurality color.
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Our Setting

e Initial bias: the plurality is at least (1 + €) times any
other color.
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Our Setting

Initial bias: the plurality is at least (1 + €) times any
other color.

Topology: complete graph (and regular expanders).

¢ Communication model: GOSSTP model
[Censor-Hillel et al., STOC "12]. Each node in one round
can exchange messages with only one neighbor.

Local memory and message size: O(logn).
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GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

4/18



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

4/18



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

...on the complete graph, plurality consensus can be achieved
in one round.

4/18



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

...on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSTIP model.

But. ..

4/18



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

...on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC '12):
Every task that can be solved in the LOCAL model in T

rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.

But. . . using the preceding theorem, message size grows
dramatically!
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(Main) Related Works

Mem. & # of Time Comm.
mess. size | colors efficiency Model
Kempe et a1
FOCE 0 O(klogn) | any O(logn) | GOSSTP
Angluin et a1
DISC "07 O(1) 2 O(logn) | Sequential
Perron et a1
INFOCOM’09
Doerr ot a1
VT O(1) 2 O(logn) | GOSSTP
Babaee ¢ a1
?Onép' 37121 O(log k) Constant | O(logn) | Sequential
ung et al.
ISIT ’12
Us+Trevisan O(log k) n®@) O(k; -log n) GOSSIP

SPAA 14
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Our Contribution: Characterizing the Initial Bias

!

g™ := |{undecided nodes}|, c® := (C{t), el q(t))

... wait 3 slides!

.= |{i-colored nodes}|,  color 1 is the plurality,
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Our Contribution: Characterizing the Initial Bias

= |{i-colored nodes}|,  color 1 is the plurality,

1

q® := |{undecided nodes}|, c®) := (C{t), e q(t))

... wait 3 slides!

Supporting nodes
Supporting nodes

(AL
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The Monochromatic Distance
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The Monochromatic Distance

< md
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Our Results

First analysis for k = w(1) of the Undecided-State Dynamics
[Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If k=0 ((n/ log n)1/3) and ¢ > (1+4¢€)- ¢ with € > 0, then
w.h.p. the Undecided-State Dynamics reaches plurality
consensus in O (md(c(o)) - log n) rounds.
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Our Results

First analysis for k = w(1) of the Undecided-State Dynamics
[Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If k=0 ((n/ log n)1/3) and ¢ > (1+4¢€)- ¢ with € > 0, then
w.h.p. the Undecided-State Dynamics reaches plurality
consensus in O (md(c(o)) - log n) rounds.

Lower Bound
If k=0 ((n/ log n)l/ﬁ) then w.h.p. the Undecided-State

Dynamics converges after at least Q(md(c(®))) rounds.
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The Undecided-State Dynamics

Some nodes can be “undecided”.
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The Undecided-State Dynamics
© o
@
@ O
® o

At the beginning of each round, each node observes a
neighbor picked uniformly at random.
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The Undecided-State Dynamics
If the observed node shares the same color. ..
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The Undecided-State Dynamics

... nothing happens;



The Undecided-State Dynamics

e e

if the node observes an undecided one. ..
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The Undecided-State Dynamics

... nothing happens too;
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The Undecided-State Dynamics

but, if the observed node has a different color. . .
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The Undecided-State Dynamics
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...then the node becomes undecided.
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The Undecided-State Dynamics
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Once undecided. . .



The Undecided-State Dynamics

... the node copies the first color it sees.
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Overview of the Process

E [c,-(tﬂ) ‘c(t)} =

) 4 24®

n
—_——

Growth factor

_ 0

i

Remarks
W.h.p.:

e Plurality does not
change.

® Growth factor of
plurality is > 1.

Value of (C; +2Q)/n

2.0

1.8

1.6

14

1.2

1.0

0.8

Simulation of the growth factor:

T aseyqdjo pug’

aseyd Jo pu3

\

120

140
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Expected Behaviour of the Process

e [ 6] =3[(09)"+ (n- )" - 5 ()]

E{ (t+1) c(t)} _ Cy) . c§r>+nzq(r>

E [ (t4+1) C(t)} _ Cl(<t) . C,((t).;.2q(t)

n
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Our Key ldea

Tip: Look for md(c(?) and R(c(®)) := Sk | ?(r)-
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Our Key Idea

Tip: Look for md(c(?) and R(c(®)) := Sk | z'kr)-

Lemma

e [C£t+1) + 2q(t+1)
n

c(t)] _

(n —2q) — C£t))2

n? n?

— 14
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First Round

Round 1: Each node

observes another random
one.
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First Round

Round 1: Each node @) [ XN ) ®
observes another random QO.QO %@9. (X ) .. .. .:
one. ® o0
0" 00 0.°0%0%,

The larger the num- .... ® O PP ) QOO
ber of colors and the .. © o0 .Q @

: it 0% 0 900 _0%0
more uniform the initial ) )
o : o © 0 o9 )
distribution, the higher @0 .. ..
the expected number of OF Yt

undecided nodes.
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First Round

The size of e(g)ch color is Qp@g) O ..OOOOOQ‘.Q.Q’Q
reduced to g 8%%@@@ Q. 0 @?Q@@
®
o0
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First Round

The size of each color is
(<)

reduced to .

Colors with

= 0(y/n) nodes

are likely to disappear.
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Phase 1

If the initial distribution
is quite uniform there are

Q(n) undecided nodes.

Undecided nodes take the
first color they pull, caus-
ing colors to spread very
fast.
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Phase 1

Lemma

Within T = O (Iog ggc()cz)) rounds the system reaches a

configuration such that w.h.p.

47 =0 i)

q”):g<li@<mi@>>

and, for every i, cfo) / 9 s approximately preserved.

]
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Phase 2

)
n0020e
00 0%e0e
00 Oe® a0 @@
590000 ® @000
#rliwcolored OOOQO O 0@ QQOOQ

Q00 0
- 0020050 2

# new undecided.
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Phase 2

The plurality has a O%OO OO0 00 @

small advantage

O
—>  after long OOOOOOO OQO P

O
time the equilib- O~ O O @ 00 _0,0
rium breaks down. QOO QOQ O o0 %.O
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Phase 2

C(T) :@( i )

md(c)

1
Plateau around {q(T) =1 (1 + 0O (ﬁ(c)))

Average Growth:
(t+1) [ (O] a 1
E [ ] = Q+9QM“J>

E [q(H—l) ‘c(t)} ~

NS
I/~
—
|
@
/N

g_
—~| =
(@]
N
N——
N———
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Phase 2

(T) n

c =0

Plateau around ! (md(c))
q(T) = g

Average Growth:

£ ) e (10 )

E ¢+ )] ~

NS
/N
=
|
0)
/

2
—~| =
(@]
N
~_—
~_—

—> Lower bound of Q (md(c)).
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Phase 2

Plateau around { !

Average Growth:

md(c)
(t+md(c) | (8] ~ ~(t) 1
E|:C1 ‘C :| NCl <1+e<md(c)>>

n 1 md(c)
LR S
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Phase 3
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Phase 3

C{t+1)+2q(t+l) «©
n

-

— Plurality Consensus is reached within O (log n) rounds.

16/18



Extension to d-Regular Expanders

Given a d-regular expander graph, k = O ((n/ log n)1/3) and
c1 > (1+¢€)- c with € > 0, using polylogarithmic memory and
message size the plurality consensus problem can be solved in
w.h.p. O(md(c)polylog(n)) rounds.
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Extension to d-Regular Expanders

Given a d-regular expander graph, k = O ((n/ log n)1/3) and
c1 > (1+¢€)- c with € > 0, using polylogarithmic memory and
message size the plurality consensus problem can be solved in
w.h.p. O(md(c)polylog(n)) rounds.

Idea. Simulate Undecided-State Dynamics on complete graph
by sampling via n parallel random walks.

® Rapidly mixing property: each random walk is w.h.p.
uniformly distributed after t = O (polylogn) steps.

® The GOSSTP model with O(polylogn) limit on message
size: congestion when random walks meet.
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Summary

e md(c): global measure of bias, key of the
Undecided-State Dynamic.
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Summary

e md(c): global measure of bias, key of the
Undecided-State Dynamic.
—> Plurality consensus problem with many colors.

® Extension to regular expanders: random walks in the

GOSSIP model.

Open Problems

? . .
e md(c) = general time lower bound on the plurality
consensus problem for any dynamics which uses only
log k + ©(1) bits of local memory?

® Undecided-State Dynamics + sampling via random walks

= efficient protocol for regular expander graphs. Similar
protocols for other classes of graphs...?
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