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(Brief) Timeline of Self-Stabilization

1973 1983

Dijkstra: Defines self-stabilization.

Lamport: Regards [Dijkstra ’73] as his most
brilliant work and self-stabilization as a
fundamental concept in fault tolerance.

1989

First Workshop on Self-Stabilizing
Systems (later SSS)

STOC papers, books, many important open problems
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Self Stabilization

S := {“correct states of the system” }.

Convergence. Starting from any state, the system
eventually reaches a state in S.
Closure. If the system is in a state in S, it stays in
S, provided no fault happens.

A system is self-stabilizing iff guarantees
convergence and closure w.r.t. S.

:= state of the system
S
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Balls-into-Bins

Maximum load: maximum number of
balls that end up in any bin.
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Repeated Balls-into-Bins

Max load: max. number of
balls in any bin.

At each round, pick one ball from each non-empty bin...
...and throw them again u.a.r.
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Self-stabilizing?

Let S = {config. with max load O(logn)}
Is the repeated balls into bins self-stabilizing?

S

Convergence? NO.

S

Closure? NO.

:= state of the system
:= random trajectory ...but almost!
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“ ” Self Stabilization

• pseudo self-stabilization: the system is allowed to deviate
from legitimate states for a finite amount of time;

• k-self-stabilization: all allowed initial states are those from
which a legitimate state of the system can be reached by
changing the state of at most k agents;

• probabilistic self-stabilization: randomized strategies for
self-stabilization are allowed;

• weak self-stabilization: only requires the existence of an
execution that eventually converges to a legitimate state.

• randomized self-stabilization: the expected number of
rounds needed to reach a correct state is bounded by some
constant k.
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“ ” Self Stabilization

• pseudo self-stabilization: the system is allowed to deviate
from legitimate states for a finite amount of time;

• k-self-stabilization: all allowed initial states are those from
which a legitimate state of the system can be reached by
changing the state of at most k agents;

• probabilistic self-stabilization: randomized strategies for
self-stabilization are allowed;

• weak self-stabilization: only requires the existence of an
execution that eventually converges to a legitimate state.

• randomized self-stabilization: the expected number of
rounds needed to reach a correct state is bounded by some
constant k.

• self-stabilization w.h.p.: convergence and closure
are guaranteed only with high probability
(fails with prob n−Θ(1)).
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The Infamous Stochastic Dependence

Stochastic dependence in balls-into-bins:
negative association,
Poisson approximation...

Stochastic dependence in repeated balls-into-bins:
...?

A coupling w.h.p.: the tetris process

M
(RBB)
t := time t max. load in repeated b.i.b.

M
(T )
t := time t max. load in tetris proc.

Pr(M (RBB)
t ≥ k) ≤ Pr(M (T )

t ≥ k) + t · e−Θ(n)
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Our Contribution [ACM SPAA ’15]

From any configuration, in O(n) rounds the
repeated balls-into-bins process reaches a conf.
with max load O(logn) w.h.p. and, from any
conf. with max load O(logn), the max load
keeps O(logn) for poly(n) rounds w.h.p.
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B.i.B. & GOSSIP Random Walks

Goal: keep max load below O(logn).
Simple random walks: max load O(logn) w.h.p.

GOSSIP model [Censor-Hillel et al. ’12]: only one
token moves from each node (limited communication).
Max load of GOSSIP random walks: O(logn)?
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[Berenbrink et al. 2010, Elsässer et al. 2015]:
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Some Related Work

Mixing time on regular expanders
[Becchetti et al. 2015]:
maximum load

√
t (t rounds).

Information exchange in phone-call model
[Berenbrink et al. 2010, Elsässer et al. 2015]:
analysis for polylog(n) rounds.

Closed Jackson networks in queueing theory:
asynchronous version of GOSSIP r.w.s
(admits closed form solution).
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Our Contribution

Repeated n balls in n bins =
n GOSSIP r.w.s on n-node complete graph

(with loops)
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Our Contribution

Corollary
After at most O(n) rounds the max. load of n
GOSSIP r.w.s on n-node complete graph is O(logn)
w.h.p., and keeps O(logn) for poly(n) rounds.

Repeated n balls in n bins =
n GOSSIP r.w.s on n-node complete graph

(with loops)

From any configuration, in O(n) rounds the
repeated balls-into-bins process reaches a conf.
with max load O(logn) w.h.p. and, from any
conf. with max load O(logn), the max load
keeps O(logn) for poly(n) rounds w.h.p.
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Conclusions

Probabilistic self-stabilization is a fruitful concept
in investigating fault tolerant algorithms that
succeed with high probability.

Research Direction
Re-work the theory of self-stabilization under the
“w.h.p.-relaxation”:
simplify old solutions & solve old open problems.

Research Direction
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On regular graphs?
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Open Questions

GOSSIP random walks
Maximum load on other topologies?
On regular graphs?
On the ring?

Repeated balls-into-bins
Maximum load of repeated
balls-into-bins with ω(n) balls?
Θ(n logn) balls?
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Thank you!
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Task assignment in mutual exclusion [Dijkstra ’73]:
Processors have to process the task , the task can
be processed by only one processor at a time.



17

Tasks Assignment in the GOSSIP Model

Task assignment in mutual exclusion [Dijkstra ’73]:
Processors have to process the tasks, the tasks can
be processed by only one processor at a time.



17

Tasks Assignment in the GOSSIP Model

(Parallel) cover time:
First round s.t. each
task has been processed
by each processor.

Random walks
strategies

=⇒

Task assignment in mutual exclusion [Dijkstra ’73]:
Processors have to process the tasks, the tasks can
be processed by only one processor at a time.

=⇒



17

Tasks Assignment in the GOSSIP Model

(Parallel) cover time:
First round s.t. each
task has been processed
by each processor.

What is the cover
time of n GOSSIP
random walks?

Random walks
strategies

=⇒

Task assignment in mutual exclusion [Dijkstra ’73]:
Processors have to process the tasks, the tasks can
be processed by only one processor at a time.

=⇒



17

Tasks Assignment in the GOSSIP Model

(Parallel) cover time:
First round s.t. each
task has been processed
by each processor.

What is the cover
time of n GOSSIP
random walks?

Random walks
strategies

=⇒

Task assignment in mutual exclusion [Dijkstra ’73]:
Processors have to process the tasks, the tasks can
be processed by only one processor at a time.

=⇒

Corollary
Cover time of n
GOSSIP r.w.s on
n-node complete graph is
O(n log2 n) w.h.p.

=⇒
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Analysis of b.i.b. – Empty Bins

Lemma
At the next round |{empty bins}|≥n4 w.h.p.

Corollary
At the next round |{thrown balls}|≤3n

4 w.h.p.

Proof
a := |{empty bins}|, b := |{bins with 1 ball}|,
X := |{new empty bins}|
1. E[X] = (a+ b)(1− 1/n)n−a

2. n− (a+ b) ≤ a =⇒ E[X] ≥ (1 + ε) n
4

3. Chernoff bound (negative association)
�
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Analysis of b.i.b. – Maximum Load

Lemma
From any configuration, every bin in the tetris
proc. is empty at least once every 5n rounds w.h.p.

Theorem
The max. load of the tetris process is O(logn) for
poly(n) rounds w.h.p.

Proof

rounds

ba
lls E[incoming balls in t rounds] = 3t

4

For each bin: load k at round t =⇒ received k+ T balls
T := # rounds from last time the bin was empty

�


	Probabilistic Self-Stabilization
	(Brief) Timeline of Self-Stabilization
	Self Stabilization
	{Balls-into-Bins}
	Repeated {Balls-into-Bins}
	Self-stabilizing?
	``\phantom{qui}'' Self Stabilization
	The Infamous Stochastic Dependence
	Our Contribution
	B.i.B. \& \gossip{} Random Walks
	Some Related Work
	Adversarial Model
	Our Contribution
	Conclusions
	Open Questions
	Task\mycol{s} Assignment in the \gossip{} Model
	Analysis of b.i.b. -- Empty Bins
	Analysis of b.i.b. -- Tetris Process
	Analysis of b.i.b. -- Maximum Load

