Probabilistic Self-Stabilization

Emanuele Natale[†]

joint work with Luca Becchetti[†], Andrea Clementi^{*}, and Francesco Pasquale^{*}

16th Italian Conference on Theoretical Computer Science Firenze, 9 – 11 September 2015

STOC papers, books, many important open problems

 $S := \{$ "correct states of the system" $\}$.

 $S := \{$ "correct states of the system" $\}$.

Convergence. Starting from any state, the system eventually reaches a state in \mathcal{S} .

 $\mathcal{S} := \{$ "correct states of the system" $\}$.

Convergence. Starting from any state, the system eventually reaches a state in \mathcal{S} .

Closure. If the system is in a state in \mathcal{S} , it stays in \mathcal{S} , provided no fault happens.

 \bullet := state of the system

 $\mathcal{S} := \{$ "correct states of the system" $\}$.

Convergence. Starting from any state, the system eventually reaches a state in \mathcal{S} .

Closure. If the system is in a state in \mathcal{S} , it stays in \mathcal{S} , provided no fault happens.

A system is self-stabilizing iff guarantees convergence and closure w.r.t. S.

Maximum load: maximum number of balls that end up in any bin.

At each round, pick one ball from each non-empty bin...

At each round, pick one ball from each non-empty bin...

At each round, pick one ball from each non-empty bin... ...and throw them again u.a.r.

At each round, pick one ball from each non-empty bin... ...and throw them again u.a.r.

At each round, pick one ball from each non-empty bin... ...and throw them again u.a.r.

Max load: max. number of balls in any bin.

Let $S = \{\text{config. with max load } O(\log n)\}$ Is the repeated balls into bins self-stabilizing?

Let $S = \{\text{config. with max load } O(\log n)\}$ Is the repeated balls into bins self-stabilizing?

Convergence?

Let $S = \{\text{config. with max load } O(\log n)\}$ Is the repeated balls into bins self-stabilizing?

Convergence? NO.

• := state of the system ---:= random trajectory

Let $S = \{\text{config. with max load } O(\log n)\}$ Is the repeated balls into bins self-stabilizing?

Convergence? NO.

Closure?

• := state of the system ---:= random trajectory

Let $S = \{\text{config. with max load } O(\log n)\}$ Is the repeated balls into bins self-stabilizing?

Convergence? NO.

Closure? NO.

• := state of the system ---:= random trajectory

Let $S = \{\text{config. with max load } O(\log n)\}$ Is the repeated balls into bins self-stabilizing?

Convergence? NO.

Closure? NO.

• := state of the system ---:= random trajectory

...but almost!

/ " Self Stabilization

- **pseudo self-stabilization**: the system is allowed to deviate from legitimate states for a finite amount of time;
- *k*-self-stabilization: all allowed initial states are those from which a legitimate state of the system can be reached by changing the state of at most *k* agents;
- **probabilistic self-stabilization**: randomized strategies for self-stabilization are allowed;
- **weak self-stabilization**: only requires the existence of an execution that eventually converges to a legitimate state.
- randomized self-stabilization: the expected number of rounds needed to reach a correct state is bounded by some constant k.

- **pseudo self-stabilization**: the system is allowed to deviate from legitimate states for a finite amount of time;
- *k*-self-stabilization: all allowed initial states are those from which a legitimate state of the system can be reached by changing the state of at most *k* agents;
- **probabilistic self-stabilization**: randomized strategies for self-stabilization are allowed;
- **weak self-stabilization**: only requires the existence of an execution that eventually converges to a legitimate state.
- randomized self-stabilization: the expected number of rounds needed to reach a correct state is bounded by some constant k.
- self-stabilization w.h.p.: convergence and closure are guaranteed only with high probability (fails with prob $n^{-\Theta(1)}$).

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

...?

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

 \dots ? A *coupling w.h.p.*: the tetris process

Stochastic dependence in balls-into-bins: negative association, Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

...?

A coupling w.h.p.: the tetris process

 $M_t^{(RBB)} := \text{time } t \text{ max. load in repeated b.i.b.}$ $M_t^{(T)} := \text{time } t \text{ max. load in tetris proc.}$

$$\Pr(M_t^{(RBB)} \ge k) \le \Pr(M_t^{(T)} \ge k) + t \cdot e^{-\Theta(n)}$$

Our Contribution [ACM SPAA '15]

From any configuration, in $\mathcal{O}(n)$ rounds the repeated balls-into-bins process reaches a conf. with max load $\mathcal{O}(\log n)$ w.h.p. and, from any conf. with max load $\mathcal{O}(\log n)$, the max load keeps $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

Goal: keep max load below $\mathcal{O}(\log n)$. \bigwedge max # of tokens on each node

Goal: keep max load below $\mathcal{O}(\log n)$. Simple random walks: max load $\mathcal{O}(\log n)$ w.h.p.

Goal: keep max load below $\mathcal{O}(\log n)$. Simple random walks: max load $\mathcal{O}(\log n)$ w.h.p.

B.i.B. & \mathcal{GOSSIP} Random Walks

Goal: keep max load below $\mathcal{O}(\log n)$. Simple random walks: max load $\mathcal{O}(\log n)$ w.h.p.

 \mathcal{GOSSIP} model [Censor-Hillel et al. '12]: only one token moves from each node (limited communication).

Goal: keep max load below $\mathcal{O}(\log n)$. Simple random walks: max load $\mathcal{O}(\log n)$ w.h.p.

 \mathcal{GOSSIP} model [Censor-Hillel et al. '12]: only one token moves from each node (limited communication). Max load of \mathcal{GOSSIP} random walks: $\mathcal{O}(\log n)$?
Some Related Work

Information exchange in phone-call model [Berenbrink et al. 2010, Elsässer et al. 2015]: analysis for polylog(n) rounds.

Some Related Work

Information exchange in phone-call model [Berenbrink et al. 2010, Elsässer et al. 2015]: analysis for polylog(n) rounds.

Mixing time on regular expanders [Becchetti et al. 2015]: maximum load \sqrt{t} (t rounds).

Some Related Work

Information exchange in phone-call model [Berenbrink et al. 2010, Elsässer et al. 2015]: analysis for polylog(n) rounds.

Mixing time on regular expanders [Becchetti et al. 2015]: maximum load \sqrt{t} (t rounds).

Closed Jackson networks in queueing theory: asynchronous version of \mathcal{GOSSIP} r.w.s (admits closed form solution).

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Every $\Omega(n)$ rounds: the adversary move the tokens (cfr Adversarial Queuing Theory [Borodin et al., '01])

Our Contribution

From any configuration, in $\mathcal{O}(n)$ rounds the repeated balls-into-bins process reaches a conf. with max load $\mathcal{O}(\log n)$ w.h.p. and, from any conf. with max load $\mathcal{O}(\log n)$, the max load keeps $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

Repeated *n* balls in *n* bins = $n \ \mathcal{GOSSIP}$ r.w.s on *n*-node complete graph (with loops)

Our Contribution

From any configuration, in $\mathcal{O}(n)$ rounds the repeated balls-into-bins process reaches a conf. with max load $\mathcal{O}(\log n)$ w.h.p. and, from any conf. with max load $\mathcal{O}(\log n)$, the max load keeps $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

Corollary

After at most $\mathcal{O}(n)$ rounds the max. load of n \mathcal{GOSSIP} r.w.s on *n*-node complete graph is $\mathcal{O}(\log n)$ w.h.p., and keeps $\mathcal{O}(\log n)$ for poly(*n*) rounds.

Conclusions

Probabilistic self-stabilization is a fruitful concept in investigating fault tolerant algorithms that succeed with high probability.

Research Direction

Re-work the theory of self-stabilization under the "w.h.p.-relaxation":

simplify old solutions & solve old open problems.

Open Questions

GOSSIP random walks Maximum load on other topologies? On regular graphs? On the ring?

Open Questions

GOSSIP random walks

Maximum load on other topologies? On regular graphs? On the ring?

Repeated balls-into-bins

Maximum load of repeated balls-into-bins with $\omega(n)$ balls? $\Theta(n \log n)$ balls?

Thank you!

Task assignment in mutual exclusion [Dijkstra '73]: Processors have to process the task , the task can be processed by only one processor at a time.

Task assignment in mutual exclusion [Dijkstra '73]: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Task assignment in mutual exclusion [Dijkstra '73]: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Random walks strategies

(Parallel) cover time: First round s.t. *each* task has been processed by each processor.

Task assignment in mutual exclusion [Dijkstra '73]: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Random walks strategies What is the cover time of $n \mathcal{GOSSIP}$ random walks?

(Parallel) cover time: First round s.t. *each* task has been processed by each processor.

Tasks Assignment in the GOSSIP Model

Task assignment in mutual exclusion |Dijkstra '73|: Processors have to process the tasks, the tasks can be processed by only one processor at a time.

Random walks strategies (Parallel) cover time: First round s.t. *each* task has been processed by each processor.

What is the cover time of $n \mathcal{GOSSIP}$ random walks?

Corollary

Cover time of nGOSSIP r.w.s on *n*-node complete graph is $\mathcal{O}(n\log^2 n)$ w.h.p.

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Proof $a := |\{\text{empty bins}\}|, b := |\{\text{bins with 1 ball}\}|,$ $X := |\{\text{new empty bins}\}|$ 1. $\mathbb{E}[X] = (a+b)(1-1/n)^{n-a}$

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Proof $a := |\{\text{empty bins}\}|, b := |\{\text{bins with 1 ball}\}|,$ $X := |\{\text{new empty bins}\}|$ 1. $\mathbb{E}[X] = (a+b)(1-1/n)^{n-a}$ 2. $n - (a+b) \leq a \implies \mathbb{E}[X] \geq (1+\epsilon)\frac{n}{4}$

Lemma

At the next round $|\{\text{empty bins}\}| \ge \frac{n}{4}$ w.h.p.

Corollary

At the next round $|\{\text{thrown balls}\}| \leq \frac{3n}{4}$ w.h.p.

Proof $a := |\{\text{empty bins}\}|, b := |\{\text{bins with 1 ball}\}|,$ $X := |\{\text{new empty bins}\}|$ 1. $\mathbb{E}[X] = (a + b)(1 - 1/n)^{n-a}$ 2. $n - (a + b) \le a \implies \mathbb{E}[X] \ge (1 + \epsilon)\frac{n}{4}$ 3. Chernoff bound (negative association)

Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling Step 1: As rep. b.i.b., take one ball from each bin

Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling Step 1: As rep. b.i.b., take one ball from each bin

Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling

Step 1: As rep. b.i.b., take one ball from each bin Step 2: Let k := non-empty bins in rep. b.i.b. If k > 3n/4 then tetris \perp rep. b.i.b. Else throw the first k balls in the same bin of rep. b.i.b., and the others u.a.r.

Tetris Process

1- Throw away a ball from each non-empty bin 2- Throw 3n/4 balls in the bins u.a.r.

Coupling

Step 1: As rep. b.i.b., take one ball from each bin Step 2: Let k := non-empty bins in rep. b.i.b. If k > 3n/4 then tetris \perp rep. b.i.b. Else throw the first k balls in the same bin of rep. b.i.b., and the others u.a.r.

Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

T := # rounds from last time the bin was empty For each bin: load k at round $t \implies$ received k + T balls

Theorem

The max. load of the tetris process is $\mathcal{O}(\log n)$ for poly(n) rounds w.h.p.

T := # rounds from last time the bin was empty For each bin: load k at round $t \implies$ received k + T balls

Lemma

From any configuration, every bin in the tetris proc. is empty at least once every 5n rounds w.h.p.