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The (Plurality) Consensus Problem

We have a set of nodes each having one color out of
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The (Plurality) Consensus Problem

We want to reach consensus (on the plurality color).
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Pre-CS History

Voter Model (’70).
Each node with a Poisson
clock. When rings, takes
the opinion of a random
neighbor.

Probabilistic
Polling
(Peleg ’01).
Time divided in discrete
rounds. All nodes
simultaneously take the
opinion of a random
neighbor.

Discrete time
(parallel/synchronous)
process. Initiated the
study of Plurality
Consensus in Computer
Science.

Continuos time (sequen-
tial/asynchronous)
process. Well studied in
statistical physics
(constant number of
particle types).

=⇒
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Our Setting

• Initial bias: the plurality is at least (1 + ε) times any
other color.

• Topology: complete graph (and regular expanders).

• Communication model: GOSSIP model
[Censor-Hillel et al., STOC ’12]. Each node
in one round can exchange messages with
only one neighbor.

• Local memory and message size: O(logn).
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Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one
round can exchange messages with all its neighbors.
. . . on the complete graph, plurality consensus can be
achieved in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . .But. . . using the preceding theorem, message size grows
dramatically!
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The 3-Majority Dynamics

Each node observes the color of three other nodes
chosen u.a.r....



The 3-Majority Dynamics

...and changes its color according to the majority of
these three (breaking ties u.a.r.).
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Upper Bound for the 3-Majority

µj(c) = E[C(t+1)
j |C(t) = c]

C
(t)
i := number of nodes supporting opinion i at round t.

Lemma 1. For any opinion j it holds
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Upper Bound for the 3-Majority

Lemma 2. Let 1 be the plurality opinion, then

µ1 − µj > s(c)
(

1 + c1
n

(
1− c1

n

))
.

Proof.

µ1 − µj > µ1 − µ2 = (c1 − c2) +
(
c2

1 − c2
2
)

n
− c1 − c2

n2

∑
h∈k

c2
h

= s(c)

(
1 + c1 + c2

n
− 1
n2

∑
h∈k

c2
h

)

> s(c)
(

1 + c1 + c2

n
− c2

1 + nc2

n2

)
= s(c)

(
1 + c1

n

(
1− c1

n

))
.



Convergence of 3-Majority [SPAA ’14]

Theorem. From any configuration with k < 3
√
n

colors, such that
s ≥ 22

√
2kn logn,

the 3-majority protocol converges to the majority
opinion in O(2k logn) rounds w.h.p., even in the
presence of a O(

√
n)-bounded dynamic adversary.

Proof. Plurality is preserved and the gap between
plurality and others increses.
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The Undecided-State Dynamics

Some nodes can be “undecided”.

?



The Undecided-State Dynamics

?

At the beginning of each round, each node observes a
neighbor picked uniformly at random.



The Undecided-State Dynamics

?

If the observed node shares the same color. . .



The Undecided-State Dynamics
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The Undecided-State Dynamics
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The Undecided-State Dynamics
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. . . then the node becomes undecided.

?



The Undecided-State Dynamics

?

Once undecided. . .

?



The Undecided-State Dynamics

?

. . . the node copies the first color it sees.



The Monochromatic Distance
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Convergence of the Undecided-State [SODA ’15]

First analysis for k = ω(1) of the
Undecided-State Dynamics (Angluin et al., Perron
et al., Babaee et al., Jung et al.).

Theorem.
If k = O

(
(n/ logn)1/3) and c1 ≥ (1 + ε) · c2 with

ε > 0, then w.h.p. the Undecided-State Dynamics
reaches plurality consensus in
O
(
md(c(0)) · logn

)
∩ Ω(md(c(0))) rounds.



Extension to d-Regular Expanders

Theorem
Given a d-regular expander graph,
k = O

(
(n/ logn)1/3) and c1 ≥ (1 + ε) · c2 with ε > 0,

using polylogarithmic memory and message size the
plurality consensus problem can be solved in w.h.p.
O(md(c)polylog(n)) rounds.



Extension to d-Regular Expanders

Theorem
Given a d-regular expander graph,
k = O

(
(n/ logn)1/3) and c1 ≥ (1 + ε) · c2 with ε > 0,

using polylogarithmic memory and message size the
plurality consensus problem can be solved in w.h.p.
O(md(c)polylog(n)) rounds.

Idea
Simulate Undecided-State Dynamics on complete
graph by sampling via n parallel random walks.
(Rapidly mixing property)



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?



Extension to d-Regular Expanders

?
?



Random Walks in the GOSSIP Model
Issue. The GOSSIP model with O(polylogn) limit on
message size: congestion when random walks meet.

?



Random Walks in the GOSSIP Model
Issue. The GOSSIP model with O(polylogn) limit on
message size: congestion when random walks meet.

?



Random Walks in the GOSSIP Model
Issue. The GOSSIP model with O(polylogn) limit on
message size: congestion when random walks meet.

?



Random Walks in the GOSSIP Model
Issue. The GOSSIP model with O(polylogn) limit on
message size: congestion when random walks meet.

?



Part 2: Congestion of GOSSIP random walks

1. Majority Consensus

(a) 3-Majority (take I)

(b) Undecided-State

2. Congestion of GOSSIP random walks

3. Stabilizing Consensus

(a) 3-Majority (take II)



Congestion in GOSSIP Random Walks

Goal: keep max load below O(logn).
max # of tokens on each node



Congestion in GOSSIP Random Walks

Goal: keep max load below O(logn).
Simple random walks: max load O(logn) w.h.p.



Congestion in GOSSIP Random Walks

Goal: keep max load below O(logn).
Simple random walks: max load O(logn) w.h.p.



Congestion in GOSSIP Random Walks

Goal: keep max load below O(logn).
Simple random walks: max load O(logn) w.h.p.

GOSSIP model [Censor-Hillel et al. ’12]: only one
token moves from each node (limited communication).
Max load of GOSSIP random walks: O(logn)?
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Some Related Work

Mixing time on regular expanders
[Becchetti et al. 2015]:
maximum load

√
t (t rounds).

Information exchange in phone-call
model [Berenbrink et al. 2010,
Elsässer et al. 2015]:
analysis for polylog(n) rounds.

Closed Jackson networks in queueing
theory: asynchronous version of
GOSSIP r.w.s
(admits closed form solution).
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Seemingly Off Topic: Balls-into-Bins

Maximum load: maximum number of
balls that end up in any bin.
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Repeated Balls-into-Bins & GOSSIP R. W.s

At each round, pick one ball from each non-empty bin...
...and throw them again u.a.r.

Repeated n balls in n bins
=

n GOSSIP r.w.s on n-node complete graph
(with loops)
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Analyzing Repeated Balls-into-Bins

The infamous stochastic dependence:
negative association,
Poisson approximation...

Stochastic dependence in repeated balls-into-bins:
How to handle time dependence?

A coupling w.h.p.: the tetris process

M
(RBB)
t := time t max. load in repeated b.i.b.

M
(T )
t := time t max. load in tetris proc.

Pr(M (RBB)
t ≥ k) ≤ Pr(M (T )

t ≥ k) + t · e−Θ(n)
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Analysis of b.i.b.

Lemma (empty bins).
At the next round |{empty bins}|≥n4 w.h.p.

Corollary
At the next round |{thrown balls}|≤3n

4 w.h.p.

Proof
a := |{empty bins}|, b := |{bins with 1 ball}|,
X := |{new empty bins}|
1. E[X] = (a+ b)(1− 1/n)n−a

2. n− (a+ b) ≤ a =⇒ E[X] ≥ (1 + ε)n4
3. Chernoff bound (negative association)

�
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Analysis of b.i.b.

Lemma
From any configuration, every bin in the tetris
proc. is empty at least once every 5n rounds w.h.p.

Theorem
The max. load of the tetris process is O(logn) for
poly(n) rounds w.h.p.

Proof

rounds

ba
lls E[incoming balls in t rounds] = 3t

4

For each bin: load k at round t =⇒ received k+ T balls
T := # rounds from last time the bin was empty

�



Our Contribution [SPAA ’15]

From any configuration, in O(n) rounds the
repeated balls-into-bins process reaches a conf.
with max load O(logn) w.h.p. and, from any
conf. with max load O(logn), the max load
keeps O(logn) for poly(n) rounds w.h.p.



Our Contribution [SPAA ’15]

Theorem
After at most O(n) rounds the max. load of n
GOSSIP r.w.s on n-node complete graph is O(logn)
w.h.p., and keeps O(logn) for poly(n) rounds.

From any configuration, in O(n) rounds the
repeated balls-into-bins process reaches a conf.
with max load O(logn) w.h.p. and, from any
conf. with max load O(logn), the max load
keeps O(logn) for poly(n) rounds w.h.p.
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GOSSIP R.W.s on non-Complete Graphs

The analysis for the complete graph can
still be applied locally provided that the
minimum degree is αn for some constant
α > 0 (G. Scornavacca’s MSc thesis).

On other topologies the technique fails
because we don’t know how to locate the
empty nodes!

Open Problems:
Maximum load on regular graphs?
Maximum load on the ring?



Part 3: Stabilizing Almost-Consensus

1. Majority Consensus

(a) 3-Majority (take I)

(b) Undecided-State

2. Congestion of GOSSIP random walks

3. Stabilizing Consensus

(a) 3-Majority (take II)



Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees,
for some γ < 1
From any initial conf., in finite number of rounds,
w.h.p. the system reaches a family of conf.s where
n−O(nγ) nodes hold the same opinion (almost
agreement), which was held in the initial conf.
(almost validity), and the convergence hold w.h.p.
for any polynomial number of rounds (almost
stability).



Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees,
for some γ < 1
From any initial conf., in finite number of rounds,
w.h.p. the system reaches a family of conf.s where
n−O(nγ) nodes hold the same opinion (almost
agreement), which was held in the initial conf.
(almost validity), and the convergence hold w.h.p.
for any polynomial number of rounds (almost
stability).

No termination!
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Failed Attempts: 3-Median

Theorem (Doerr et al. SPAA ’11). For any√
n-bounded adversary,in O(logm · log logn+ logn) time

the 3-median rule computes w.h.p. an almost stable
value between the (n/2− c
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nlogn)-largest and the

(n/2 + c
√
nlogn)- largest of the initial values.

Changed by adversary
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No almost validity

1 3 1 3
2
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Part 2-a: 3-Majority (take II)

1. Majority Consensus

(a) 3-Majority (take I)

(b) Undecided-State

2. Congestion of GOSSIP random walks

3. Stabilizing Consensus

(a) 3-Majority (take II)



3-Majority without Bias [SODA ’16]

What if we start from any initial configuration, i.e.
there may be no initial bias?



3-Majority without Bias [SODA ’16]

Theorem. Let k ≤ nα, for a suitable constant
α < 1, and F = β

√
n/(k 5

2 logn) for some constant
β > 0. The 3-majority dynamics is a stabilizing
almost-consensus protocol in the presence of any
F -dynamic adversary and its convergence time is
O((k2√logn+ k logn)(k + logn)), w.h.p.

What if we start from any initial configuration, i.e.
there may be no initial bias?



What’s the Problem without Bias?

Lemma 2. Let 1 be the plurality opinion, then

µ1 − µj > s(c)
(

1 + c1
n

(
1− c1

n

))
.

Proof.

µ1 − µj > µ1 − µ2 = (c1 − c2) +
(
c2

1 − c2
2
)

n
− c1 − c2

n2

∑
h∈k

c2
h

= s(c)

(
1 + c1 + c2

n
− 1
n2

∑
h∈k

c2
h

)

> s(c)
(

1 + c1 + c2

n
− c2

1 + nc2

n2

)
= s(c)

(
1 + c1

n

(
1− c1

n

))
.



“Unbiased” Analysis

1
2

1
2

Symmetry Breaking

0−m m

Ω(m2) steps to “escape”



“Unbiased” Analysis
Symmetry Breaking

0−m m

Ω(m2) steps to “escape”
jump of width λ



“Unbiased” Analysis

Lemma. {Xt}t a Markov chain with finite state space Ω,
f : Ω→ N, {Yt}t the stochastic process Yt = f(Xt), m ∈ N a
“target value” and τ = inf{t ∈ N : Yt ≥ m} the r.v. of the
first time Yt surpasses m. Assume that, ∀x ∈ Ω with
f(x) ≤ m− 1, it holds
1. (Positive drift). E[Yt+1 |Xt = x] > f(x) +λ for some λ > 0
2. (Bounded jumps). PrYτ ≥ αm ≤ αm/n, for some α > 1.

Then, ∀x ∈ Ω, it holds E[τ ] ≤ 2αm
λ
.

Symmetry Breaking

0−m m
jump of width λ

O((m/λ)2) steps to “escape”



“Unbiased” Analysis
Symmetry Breaking

0−m m
jump of width λ

O((m/λ)2) steps to “escape”

Lemma. Let c be any configuration with j supported
opinions. Within t = O

(
j2 log1/2 n

)
rounds it holds

that

Pr(∃i such that C(t)
i ≤ n/j −

√
jn logn) ≥ 1

2



“Unbiased” Analysis

Lemma. Let c be the conf. at round t with j supported
opinions. For any opinion i it holds,

E[C(t+1)
i |C(t) = c] ≤ ci

(
1 + ci

n
− 1
j

)
.



“Unbiased” Analysis

Lemma. Let c be the conf. at round t with j supported
opinions. For any opinion i it holds,

E[C(t+1)
i |C(t) = c] ≤ ci

(
1 + ci

n
− 1
j

)
.

Su
pp

or
tin

g
no

de
s

c1 c2 . . .

Average size



“Unbiased” Analysis

Lemma. Let c be any conf. with j ≤ n1/3−ε supported
opinions (∀ε > 0 const), and such that an opinion i exists
with ci ≤ n/j −

√
jn logn. Within t = O(j logn) rounds

opinion i becomes O
(
j2 logn

)
w.h.p.

ci ≤ n/j −
√
jn logn ci = O(j2 logn)t = O(j logn)

w.h.p.



“Unbiased” Analysis

Lemma. Let c be any conf. with j ≤ n1/3−ε supported
opinions (∀ε > 0 const), and such that an opinion i exists
with ci ≤ n/j −

√
jn logn. Within t = O(j logn) rounds

opinion i becomes O
(
j2 logn

)
w.h.p.

Lemma. Let c be any conf. with j ≤ n1/3−ε supported
opinions (∀ε > 0 const), and such that an opinion i exists
with ci ≤ n/(2j). Within t = O(j logn) rounds opinion i
disappears with probability at least 1/2.

ci ≤ n/j −
√
jn logn ci = O(j2 logn)t = O(j logn)

ci ≤ n/(2j) ci = 0t = O(j logn)

w.h.p.

with prob. ≥ 1/2



Stabilizing Consensus on not-Complete Graphs

Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?



Stabilizing Consensus on not-Complete Graphs

Theorem (Cooper et al. ICALP ’14).
Let G be a random d-regular graph with initial opinions
A and B. There is an absolute constant K (independent
of d) such that, provided

|A−B|
n

≥ K

√
d

n
+ 1
d
,

two-sample voting is completed in O(logn) steps a.a.s.,
and the winner is the opinion with the initial majority.

Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?



Stabilizing Consensus on not-Complete Graphs

Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?

Theorem (Cooper et al. ICALP ’14).
Let G be a d-regular graph with initial opinions A and
B, 1 = λ1 ≥ λ2 ≥ · · ·λn ≥ −1 be the eigenvalalues of
the transition matrix of the r.w. on G, and
λ = λG = max{|λ2|, |λn|}. For some const. K (indep. of
d and λG), provided

|A−B|/n ≥ KλG,

a.a.s. two-sample voting is completed in O(logn) steps
and winner is the initial majority.



Stabilizing Consensus on not-Complete Graphs

Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?

Expander Mixing Lemma (Alon, Chung).
Let G = (V,E) be a d-regular n-vertex graph. Let
1 = λ1 ≥ λ2 ≥ · · ·λn ≥ −1 be the eigenvalues of the
transition matrix of the random walk on G, and let
λ = λG = max{|λ2|, |λn|}. Then for all S, T ⊆ V ,∣∣∣E(S, T )− dST

n

∣∣∣ ≤ λd
√
ST .



Thank you!
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