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The Plurality Consensus Problem

• We have a set of nodes
each having one color
out of {1, . . . , k}.
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The Plurality Consensus Problem

• We have a set of nodes
each having one color
out of {1, . . . , k}.

• There is a plurality of
nodes having the same
color.

• We want to reach
consensus on the
plurality color.
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Motivations and Applications

• Computer science: distributed databases and sensor
networks (Bénézit et al. ’09).

• Social networks: opinion dynamics (Mossel et al. ’14).

• Biology: cell cycle (Cardelli et al. ’12).

• Chemestry: chemical reaction networks/population
protocols (Angluin et al. ’07).
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Pre-CS History

Voter Model (’70). Each node with a Poisson clock. When
rings, takes the opinion of a random neighbor.

→ Continuos time (sequential/asynchronous) process. Well
studied in statistical physics (constant number of particle
types).

Probabilistic Polling (Peleg ’99). Time divided in discrete
rounds. All nodes simultaneously take the opinion of a random
neighbor.
→ Discrete time (parallel/synchronous) process. Initiated the
study of Plurality Consensus in Computer Science.
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Asynchronous vs Synchronous

Asynchronous Case

Synchronous Case
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Our Setting

• Initial bias: the plurality is at least (1 + ε) times any
other color.

• Topology: complete graph (and regular expanders).

• Communication model: GOSSIP model
[Censor-Hillel et al., STOC ’12]. Each node in one round
can exchange messages with only one neighbor.

• Local memory and message size: O(log n).
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Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one round
can exchange messages with all its neighbors.
. . . on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . . using the preceding theorem, message size grows
dramatically!

7 / 22



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one round
can exchange messages with all its neighbors.

. . . on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . . using the preceding theorem, message size grows
dramatically!

7 / 22



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one round
can exchange messages with all its neighbors.
. . . on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . . using the preceding theorem, message size grows
dramatically!

7 / 22



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one round
can exchange messages with all its neighbors.
. . . on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . .

using the preceding theorem, message size grows
dramatically!

7 / 22



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one round
can exchange messages with all its neighbors.
. . . on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . . using the preceding theorem, message size grows
dramatically!

7 / 22



(Main) Related Works
Mem. &
mess. size

# of
colors

Time
efficiency

Comm.
Model

Kempe et al.

FOCS ’03

Angluin et al.

DISC ’07
Perron et al.

INFOCOM’09

Doerr et al.

SPAA ’11

Us+Trevisan
SPAA ’14

Jung et al.

ISIT ’12

Comp. J. ’12
Babaee et al.

O(k log n) any O(log n) GOSSIP

2 O(log n) SequentialΘ(1)

2 O(log n) GOSSIP

GOSSIP

Θ(1)

Constant SequentialO(log n)O(log k)

O(log k) O(k · log n)nΘ(1)
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Our Contribution: Characterizing the Initial Bias

c (t)
i := |{i-colored nodes}|, color 1 is the plurality
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The Monochromatic Distance

md(c(0)) :=
k∑

i=1


c

(0)
i

c
(0)
1




2

=1+D





,

1 ≤ md






� md


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

≤ k
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Our Results

First analysis for k = ω(1) of the Undecided-State Dynamics
[Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound
If k = O

(
(n/ log n)1/3

)
and c1 ≥ (1 + ε) · c2 with ε > 0, then

w.h.p. the Undecided-State Dynamics reaches plurality
consensus in O

(
md(c(0)) · log n

)
rounds.

Lower Bound
If k = O

(
(n/ log n)1/6

)
then w.h.p. the Undecided-State

Dynamics converges after at least Ω(md(c(0))) rounds.
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The Undecided-State Dynamics

?

Some nodes can be “undecided”.
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The Undecided-State Dynamics

?

At the beginning of each round, each node observes a
neighbor picked uniformly at random.
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The Undecided-State Dynamics

?

If the observed node shares the same color. . .
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The Undecided-State Dynamics

?

. . . nothing happens;
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The Undecided-State Dynamics
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The Undecided-State Dynamics
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. . . nothing happens too;
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The Undecided-State Dynamics

?

but, if the observed node has a different color. . .

12 / 22



The Undecided-State Dynamics

?

?

. . . then the node becomes undecided.
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The Undecided-State Dynamics

?

?

Once undecided. . .
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The Undecided-State Dynamics

?

?

. . . the node copies the first color it sees.
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Overview of the Process

c (t)
i := |{i-colored nodes}|, color 1 is the plurality,

q(t) := |{undecided nodes}|, c(t) :=
(

c (t)
1 , . . . , c (t)

k , q(t)
)

E
[
c (t+1)

i

∣∣∣c(t)
]

= c (t)
i ·

c (t)
i + 2q(t)

n︸ ︷︷ ︸
Growth factor
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Overview of the Process

E
[
c (t+1)

i

∣∣∣c(t)
]

=

= c (t)
i ·

c (t)
i + 2q(t)

n︸ ︷︷ ︸
Growth factor

Remarks
W.h.p.:

• Plurality does not
change.

• Growth factor of
plurality is > 1.

Simulation of the growth factor:
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Expected Behaviour of the Process





E
[
q(t+1)

∣∣∣c(t)
]

= 1
n

[(
q(t)

)2
+
(

n − q(t)
)2 −∑i

(
c (t)

i

)2
]

E
[
c (t+1)

1

∣∣∣c(t)
]

= c (t)
1 · c(t)

1 +2q(t)

n
...

E
[
c (t+1)

k

∣∣∣c(t)
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k ·
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k +2q(t)

n
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Our Key Idea

Tip: Look for md(c(t)) and R(c(t)) := ∑k
i=1

c(t)
i

c(t)
1

.

Lemma

E

c (t+1)

1 + 2q(t+1)

n

∣∣∣∣∣∣
c(t)


 =

= 1 +

(
n − 2q(t) − c (t)

1

)2

n2 +
2
(

R(c(t))−md(c(t))
)
· (c1)2

n2
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First Round

Round 1: Each node
observes another random
one.
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First Round

Round 1: Each node
observes another random
one.

The larger the num-
ber of colors and the
more uniform the initial
distribution, the higher
the expected number of
undecided nodes.
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First Round

The size of each color is
reduced to (c(0)

i )2
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First Round

The size of each color is
reduced to (c(0)

i )2

n .

Colors with
c (0)

i = O(
√

n) nodes
are likely to disappear.

?
?
?

?

?
?
?

?

?? ?
?
?

?

?

?
?
?
?

?
?
?
?

?
?

?

?

?
?
?
?

?
?
?

??

?

? ?

?
?
?
?

?

?

?

?
?? ?
?

?
?
?

?
?

?
?
??

?
??

?
?

?

?

?

17 / 22



Phase 1

If the initial distribution
is quite uniform there are
Ω(n) undecided nodes.

Undecided nodes take the
first color they pull, caus-
ing colors to spread very
fast.
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Phase 1

Lemma
Within T = O

(
log R(c)2

md(c)

)
rounds the system reaches a

configuration such that w.h.p.

c (T )
1 = Θ

(
n

md(c)

)

q(T ) = n
2

(
1±Θ

(
1

md(c)

))

and, for every i , c (0)
1 /c (0)

i is approximately preserved.
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Phase 2

# new colored
≈

# new undecided.
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Phase 2
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Phase 2

Average Growth:

E
[
c (t+1)

1

∣∣∣c(t)
]
≈ c (t)

1

(
1 + Θ

(
1

md(c)

))

E
[
q(t+1)

∣∣∣c(t)
]
≈ n

2

(
1−Θ

(
1

md(c)

))

=⇒ Lower bound of Ω (md(c)).
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Phase 2

The plurality has a
small advantage
=⇒ after long
time the equilib-
rium breaks down.
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Phase 2

Average Growth:

E
[
c (t+ md(c))

1

∣∣∣c(t)
]
≈ c (t)

1

(
1 + Θ

(
1

md(c)

))md(c)

E
[
q(t+ md(c))

∣∣∣c(t)
]
≈ n

2

(
1−Θ

(
1

md(c)

))md(c)

=⇒ After O (md(c) log n) rounds, R(c(t)) = 1 + o(1).
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Phase 3

R(c(t)) = 1 + o(1) =⇒ c (t)
1 = n − q(t)
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=⇒ E
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
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(
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n

)2

=⇒ Plurality Consensus is reached within O (log n) rounds.
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Extension to d -Regular Expanders

Given a d-regular expander graph, k = O
(

(n/ log n)1/3
)

and
c1 ≥ (1 + ε) · c2 with ε > 0, using polylogarithmic memory and
message size the plurality consensus problem can be solved in
w.h.p. O(md(c)polylog(n)) rounds.

Idea. Simulate Undecided-State Dynamics on complete graph
by sampling via n parallel random walks.
(Rapidly mixing property)

Issue. The GOSSIP model with O(polylogn) limit on
message size: congestion when random walks meet.
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Summary

• md(c): global measure of bias, key of the
Undecided-State Dynamic.

=⇒ Plurality consensus problem with many colors.
• Extension to regular expanders: random walks in the
GOSSIP model.

Open Problems
• md(c) ?= general time lower bound on the plurality

consensus problem for any dynamics which uses only
log k + Θ(1) bits of local memory?

• Undecided-State Dynamics + sampling via random walks
= efficient protocol for regular expander graphs. Similar
protocols for other classes of graphs. . . ?
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