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The Plurality Consensus Problem

= We have a set of nodes
each having one color
out of {1,..., k}.

= There is a plurality of
nodes having the same
color.

= We want to reach
consensus on the
plurality color.
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Motivations and Applications

= Computer science: distributed databases and sensor
networks (Bénézit et al. '09).

= Social networks: opinion dynamics (Mossel et al. '14).
= Biology: cell cycle (Cardelli et al. '12).

= Chemestry: chemical reaction networks/population
protocols (Angluin et al. '07).
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Pre-CS History

Voter Model ('70). Each node with a Poisson clock. When
rings, takes the opinion of a random neighbor.

— Continuos time (sequential /asynchronous) process. Well
studied in statistical physics (constant number of particle

types).

Probabilistic Polling (Peleg '99). Time divided in discrete
rounds. All nodes simultaneously take the opinion of a random
neighbor.

— Discrete time (parallel/synchronous) process. Initiated the
study of Plurality Consensus in Computer Science.
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Our Setting

= Initial bias: the plurality is at least (1 + €) times any
other color.

= Topology: complete graph (and regular expanders).

= Communication model: GOSSZP model

[Censor-Hillel et al., STOC "12]. Each node in one round
can exchange messages with only one neighbor.

= Local memory and message size: O(log n).

6 /22



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..



Relationships to Other Communication Models
GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

...on the complete graph, plurality consensus can be achieved
in one round.



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

...on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSTIP model.

But. ..



Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly: Telephone
Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, SIAM '00]: each node in one round
can exchange messages with all its neighbors.

...on the complete graph, plurality consensus can be achieved
in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSTIP model.

But. . . using the preceding theorem, message size grows
dramatically!
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Our Results

First analysis for k = w(1) of the Undecided-State Dynamics
[Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If k=0 ((n/ log n)1/3) and ¢ > (1+4¢€)- ¢ with € > 0, then
w.h.p. the Undecided-State Dynamics reaches plurality
consensus in O (md(c(o)) - log n) rounds.



Our Results

First analysis for k = w(1) of the Undecided-State Dynamics
[Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If k=0 ((n/ log n)1/3) and ¢ > (1+4¢€)- ¢ with € > 0, then
w.h.p. the Undecided-State Dynamics reaches plurality
consensus in O (md(c(o)) - log n) rounds.

Lower Bound
If k=0 ((n/ log n)l/ﬁ) then w.h.p. the Undecided-State

Dynamics converges after at least Q(md(c(®))) rounds.



The Undecided-State Dynamics

Some nodes can be “undecided”.
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The Undecided-State Dynamics

... nothing happens too;
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The Undecided-State Dynamics
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... the node copies the first color it sees.
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0 .= |{i-colored nodes}|, color 1 is the plurality,

q®) .= |{undecided nodes}|, c(* := (c{t), e C,Et), q(t))
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Overview of the Process

E [0 [c] =

_ 0. " +2qY

n
—_————

Growth factor

Remarks
W.h.p.:

= Plurality does not
change.

= Growth factor of
plurality is > 1.

Value of (C; +2Q)/n

2.0

1.8

1.6

14

1.2

1.0

0.8

Simulation of the growth factor:
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\

120 140

14 /22



Expected Behaviour of the Process
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Expected Behaviour of the Process
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Our Key Idea

Tip: Look for md(c(?) and R(c(®)) := Sk | z'kr)-

Lemma

e [C£t+1) + 2q(t+1)
n

c(t)] _

(n —2q) — C£t))2

n? n?

— 14
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First Round

Round 1: Each node

observes another random
one.
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First Round
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observes another random OQ%O OQO %:. 00y
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more uniform the initial ® @] ) o
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distribution, the higher o0 0 09 @ 0°
the expected number of ® OO:.....

undecided nodes.
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First Round
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First Round

The size of each color is
(<)

reduced to .

Colors with

= 0(y/n) nodes

are likely to disappear.

17 /22



Phase 1

If the initial distribution
is quite uniform there are

Q(n) undecided nodes.

Undecided nodes take the
first color they pull, caus-
ing colors to spread very
fast.
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Phase 1

Lemma

Within T = O (Iog ggc()cz)) rounds the system reaches a

configuration such that w.h.p.

47 =0 i)

q”):g<li@<mi@>>

and, for every i, cfo) / 9 s approximately preserved.
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Average Growth:

E [cftﬂ) ’c(t)} ~ ct) <1 +0 ( L

E [q(tﬂ) ‘c(t)} R g (1 -0 (mdl(c)>

— Lower bound of Q (md(c)).
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Phase 2

The plurality has a
small advantage

—>  after long
time the equilib-
rium breaks down.



Phase 2

Average Growth:
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Phase 2

Average Growth:

md(c)
(tmd(c)) | ()] ~ (B 1
E[c1 ’c } ~q <1+9< d(c)))

n 1 md(c)
i3 o)

— After O (md(c)log n) rounds, R(c()) =1+ o(1).
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Phase 3

C{t+1)+2q(t+l) «©
n

-

— Plurality Consensus is reached within O (log n) rounds.
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Extension to d-Regular Expanders

Given a d-regular expander graph, k = O ((n/ log n)1/3) and
c1 > (1+€)- ¢ with e > 0, using polylogarithmic memory and
message size the plurality consensus problem can be solved in
w.h.p. O(md(c)polylog(n)) rounds.

Idea. Simulate Undecided-State Dynamics on complete graph
by sampling via n parallel random walks.
(Rapidly mixing property)

Issue. The GOSSZP model with O(polylogn) limit on
message size: congestion when random walks meet.
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Summary

= md(c): global measure of bias, key of the
Undecided-State Dynamic.
—> Plurality consensus problem with many colors.

= Extension to regular expanders: random walks in the

GOSSIP model.

Open Problems

? . .
= md(c) = general time lower bound on the plurality
consensus problem for any dynamics which uses only
log k + ©(1) bits of local memory?

= Undecided-State Dynamics + sampling via random walks

= efficient protocol for regular expander graphs. Similar
protocols for other classes of graphs...?

N
N
N
N



	title
	The Plurality Consensus Problem
	Background
	Our Setting
	Relationships to Other Communication Models
	(Main) Related Works
	Our Contribution: Characterizing the Initial Bias
	Our Contribution: The Monochromatic Distance
	Our Results
	The Undecided-State Dynamics
	Overview of the Process
	Expected Behaviour of the Process
	Our Key Idea
	First Round
	Phase 1
	Phase 2
	Phase 3
	Extension to d-Regular Expanders
	Summary

