Noisy Rumor Spreading and Plurality Consensus

Emanuele Natale[†]
joint work with
Pierre Fraigniaud*

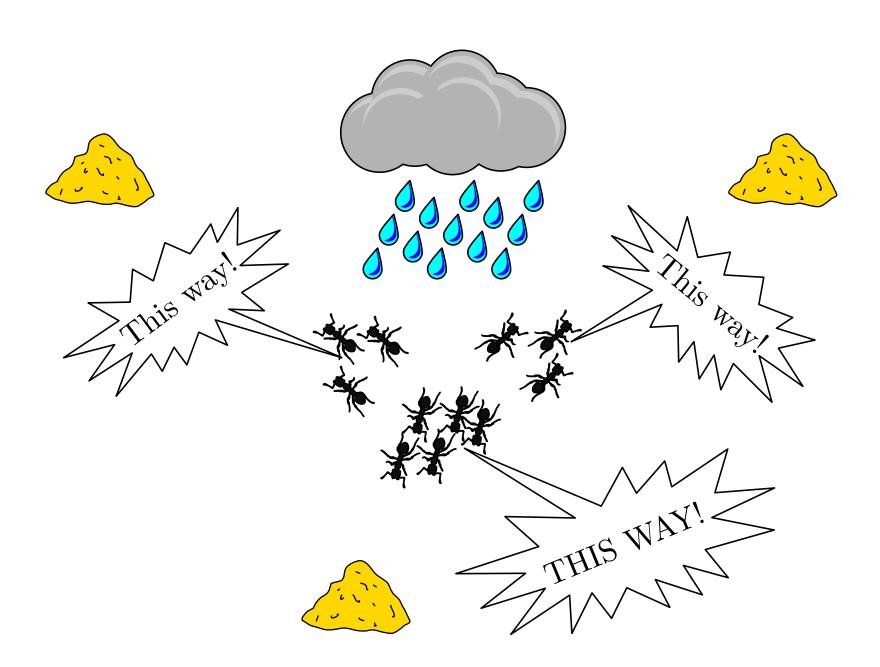
3rd Workshop on Biological Distributed Algorithms

August 18-19, 2015 Boston, MA USA at MIT

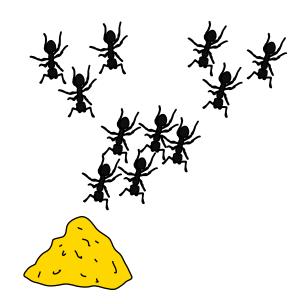
Rumor-Spreading Problem

Rumor-Spreading Problem

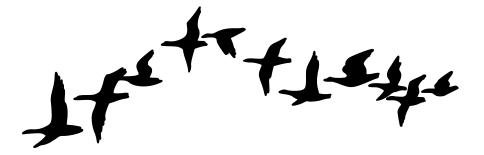
Plurality Consensus Problem



Plurality Consensus Problem

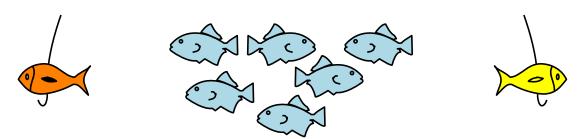


Flocks of birds [Ben-Shahar et al. '10]

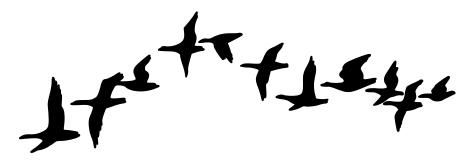


Flocks of birds [Ben-Shahar et al. '10]

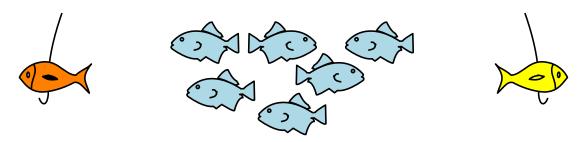
Schools of fish [Sumpter et al. '08]



Flocks of birds [Ben-Shahar et al. '10]



Schools of fish [Sumpter et al. '08]

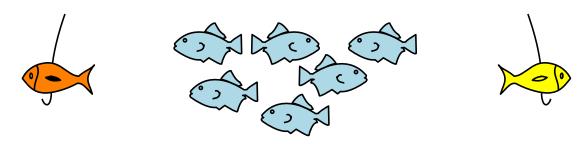


Insects colonies [Franks et al. '02]

Flocks of birds [Ben-Shahar et al. '10]



Schools of fish [Sumpter et al. '08]



Insects colonies [Franks et al. '02]

Eukaryotic cells [Cardelli et al. '12]

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use coding theory...

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use coding theory...

- O. Feinerman, B. Haeupler and A. Korman.

 Breathe before speaking: efficient information

 dissemination despite noisy, limited and anonymous

 communication. (PODC '14)
- ⇒ **Natural** rules efficiently solve rumor spreading and plurality consensus despite noise.

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use coding theory...

- O. Feinerman, B. Haeupler and A. Korman.

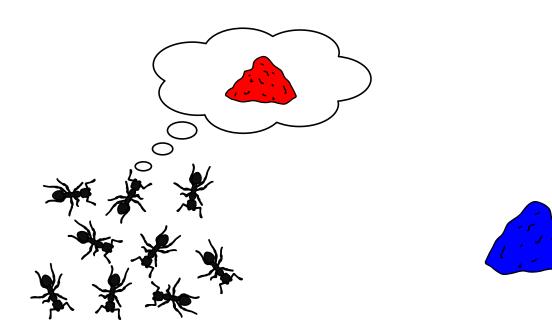
 Breathe before speaking: efficient information

 dissemination despite noisy, limited and anonymous

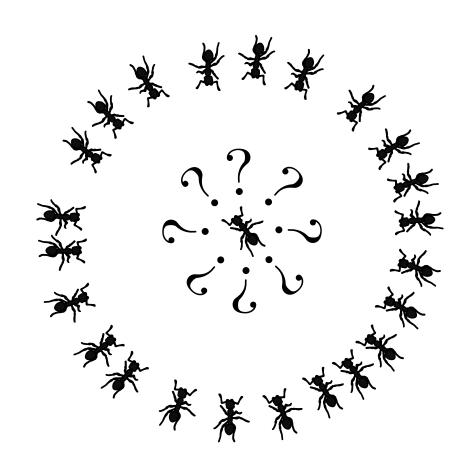
 communication. (PODC '14)
- ⇒ **Natural** rules efficiently solve rumor spreading and plurality consensus despite noise.

They only consider the binary-opinion case. **Our contribution**: generalize to many opinions.

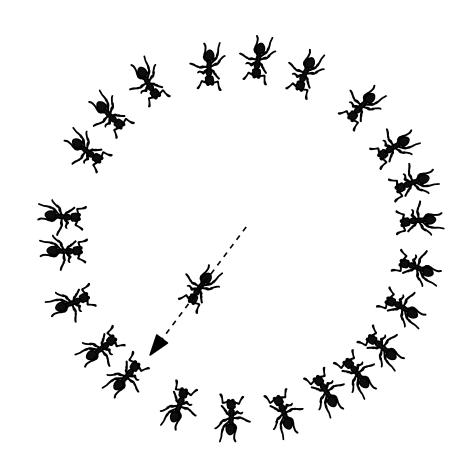
n agents. One agent has one bit to spread.

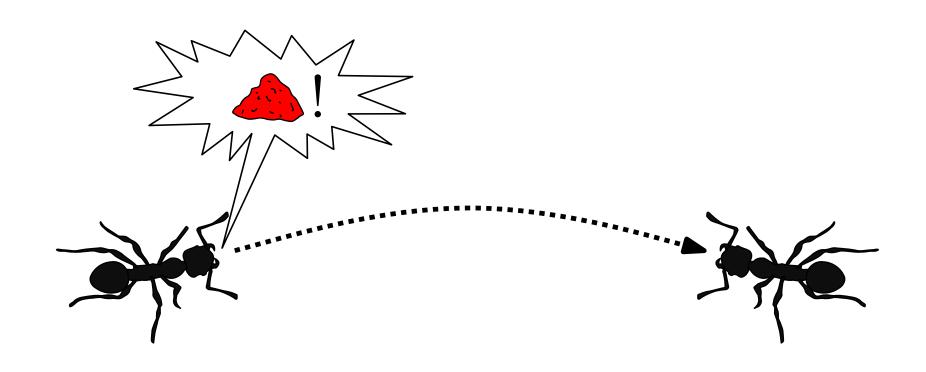


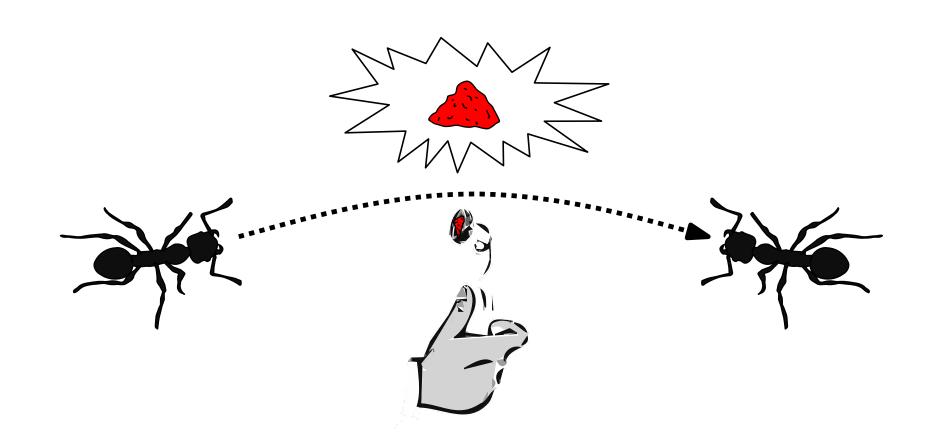
Communication model: push gossip model [Pittel '87]: at each round each agent can send a bit to another one chosen uniformly at random.

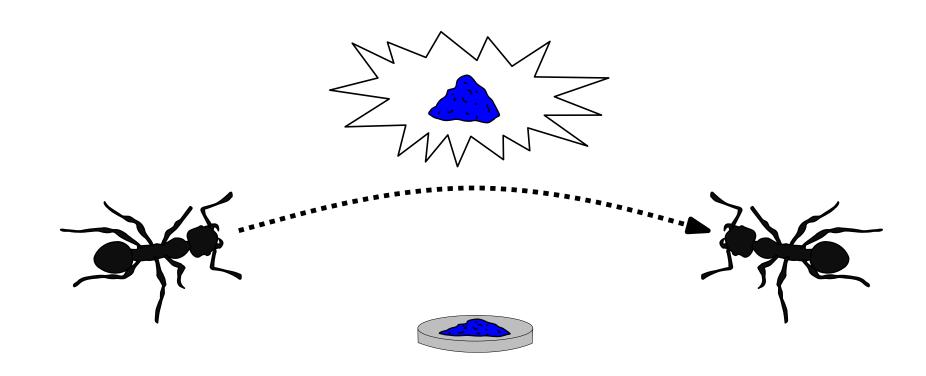


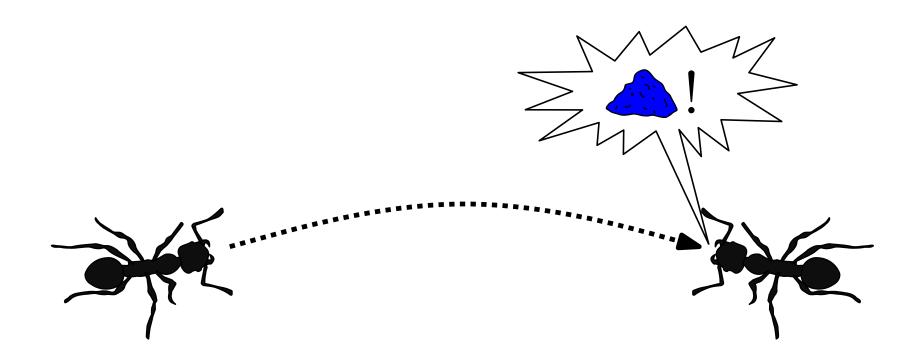
Communication model: push gossip model [Pittel '87]: at each round each agent can send a bit to another one chosen uniformly at random.

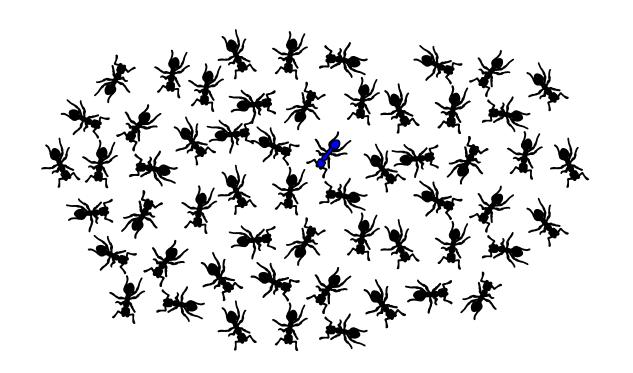






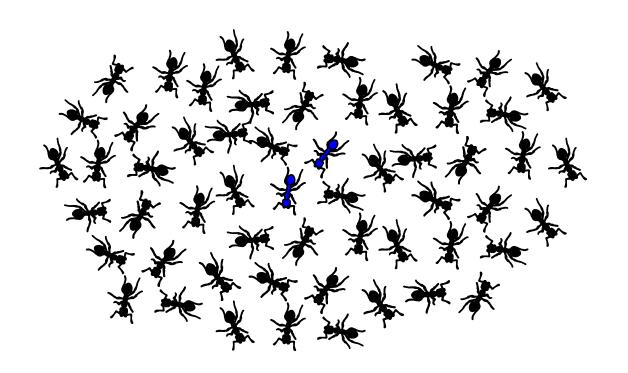






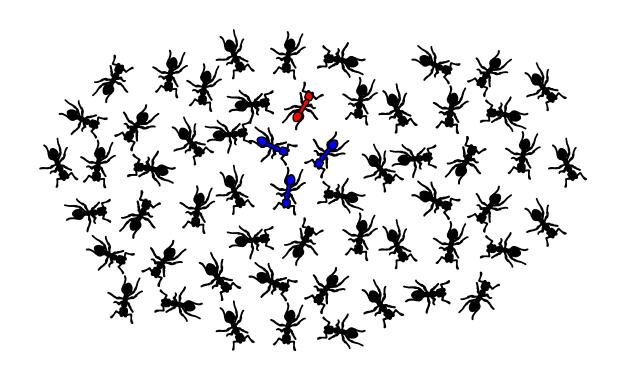
trivial strategy

blue vs red: 1/0



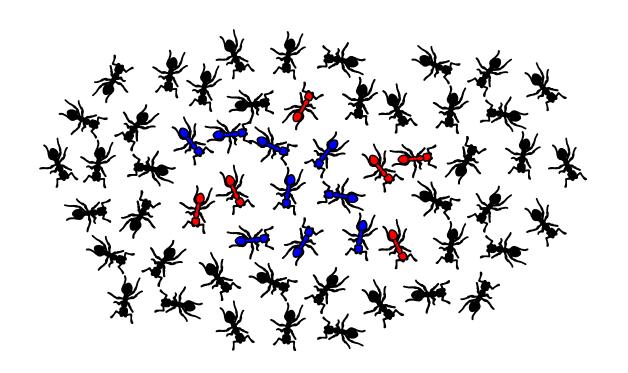
trivial strategy

blue vs red: 2/0



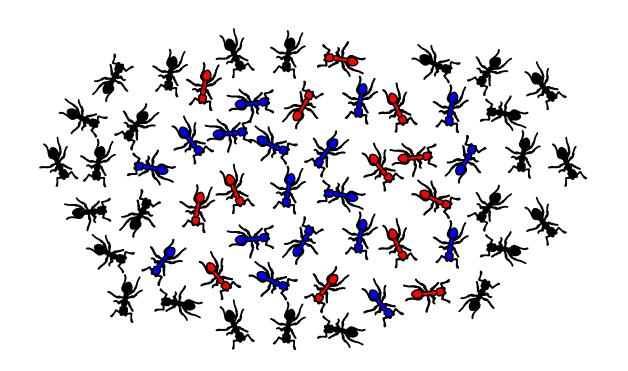
trivial strategy

blue vs red: 3/1



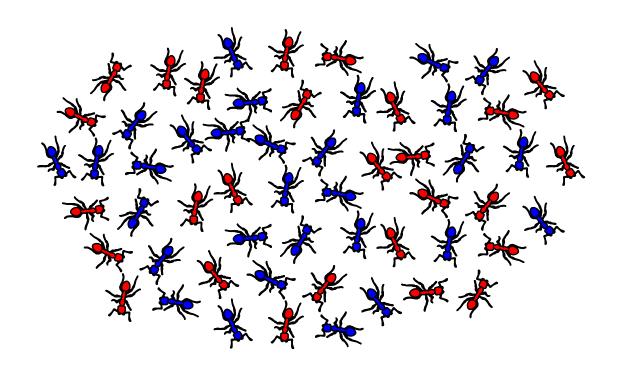
trivial strategy

blue vs red: 9/6 = 1.5



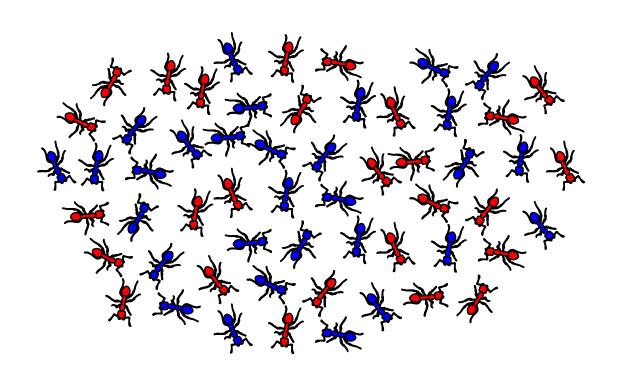
trivial strategy

blue vs red: $18/13 \approx 1.4$

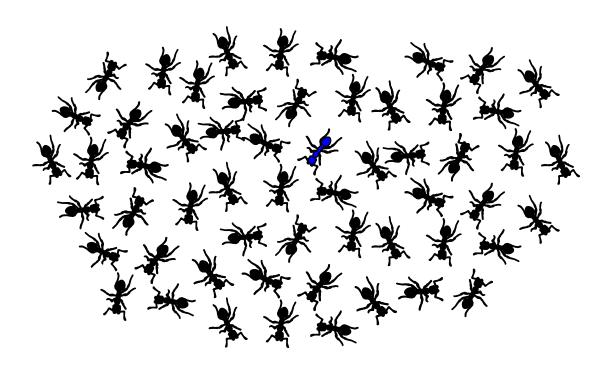


trivial strategy

blue vs red: $35/29 \approx 1.2$



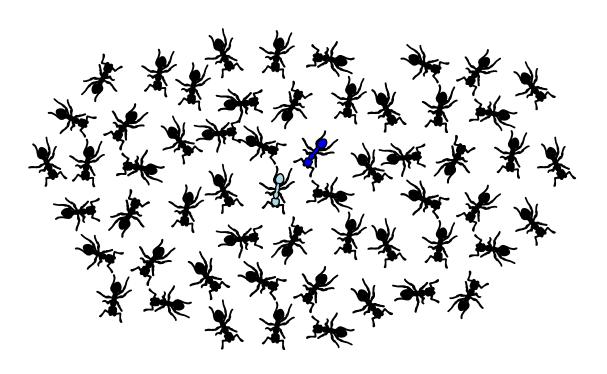
blue vs red: $35/29 \approx 1.2$



Stage 1: Spreading

blue vs red: 1/0

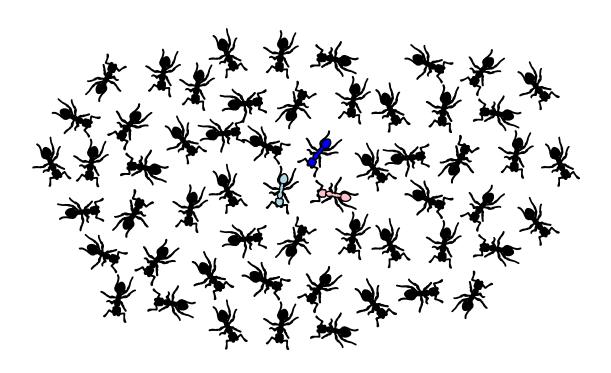
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 1/0

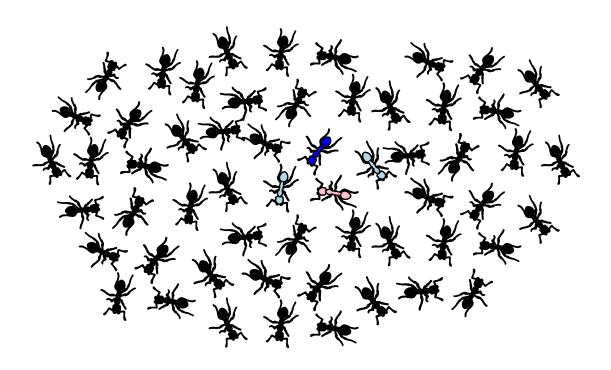
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 1/0

"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 1/0

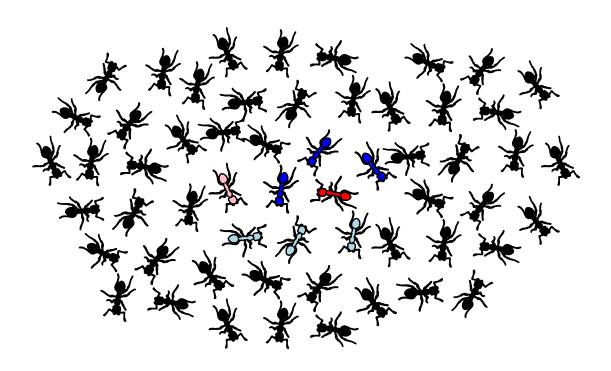
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 3/1

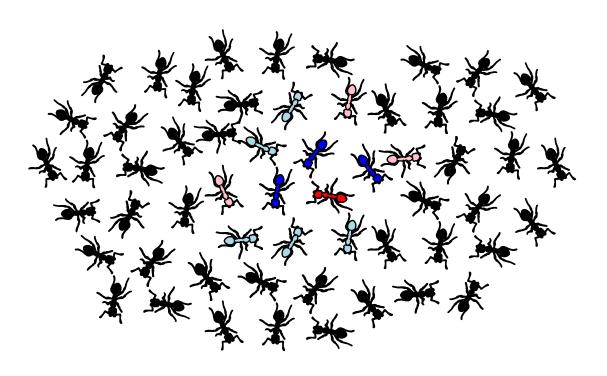
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 3/1

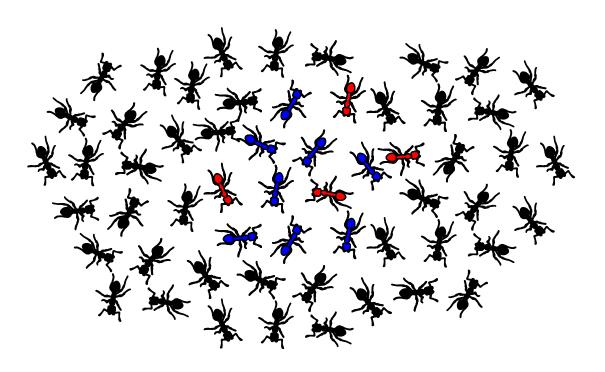
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 3/1

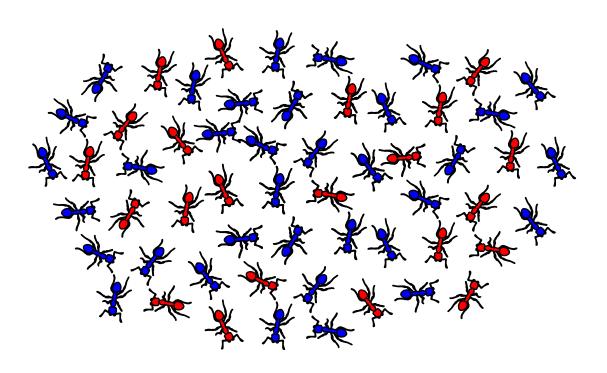
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: 8/4

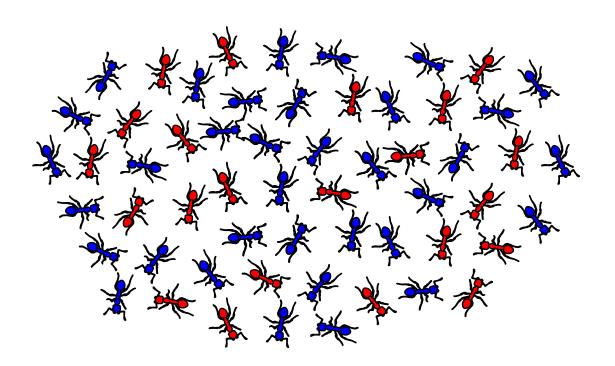
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



Stage 1: Spreading

blue vs red: $40/24 \approx 1.7$

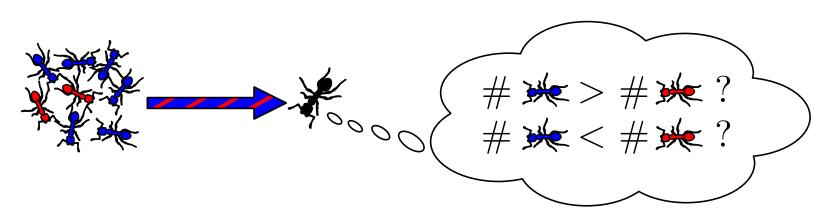
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."



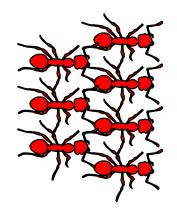
Stage 1: Spreading

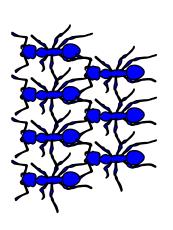
blue vs red: $40/24 \approx 1.7$

Stage 2: Amplifying majority

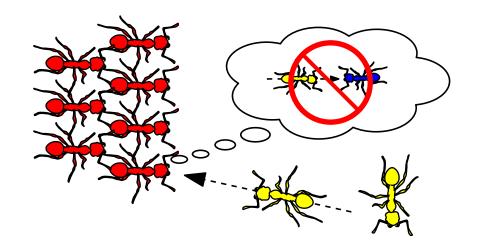


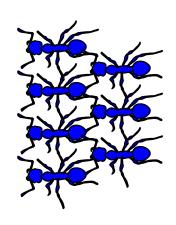
• Stochastic Dependence



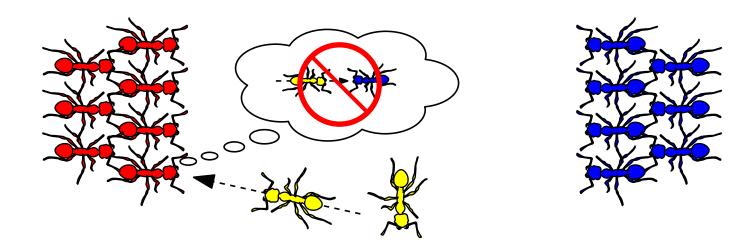


• Stochastic Dependence





• Stochastic Dependence

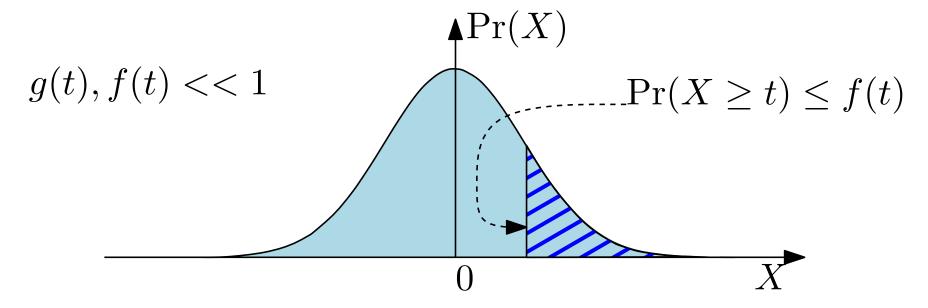


• Multivariate Asymptotics

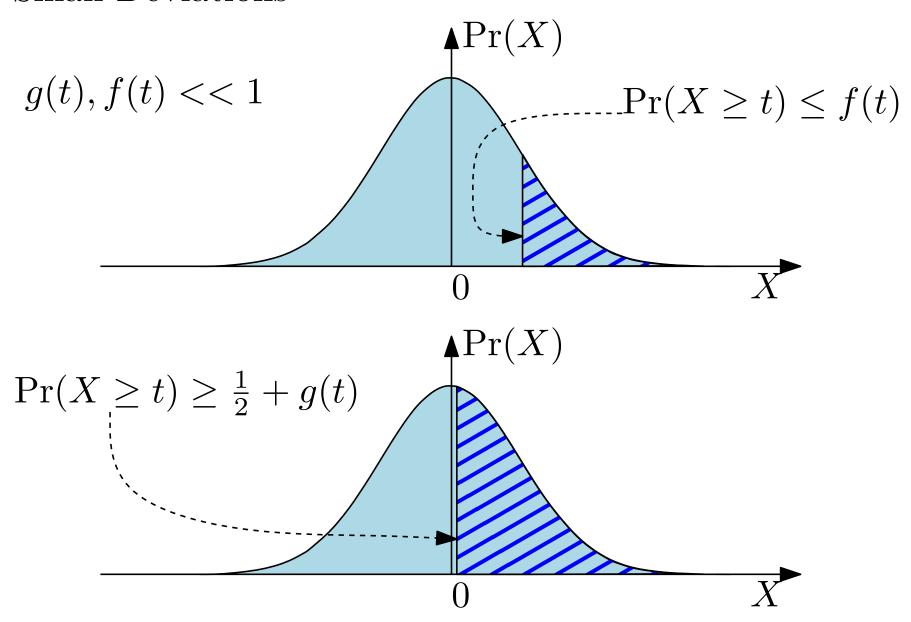
The number k of states of an agent changes with the number of agents in the system.

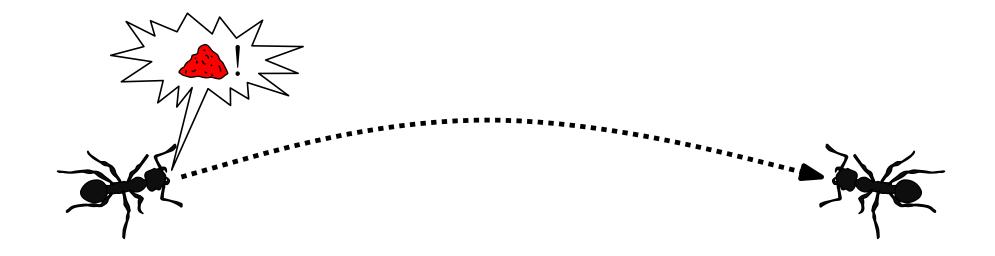
$$k = k(n) \xrightarrow[n \to \infty]{} \infty$$

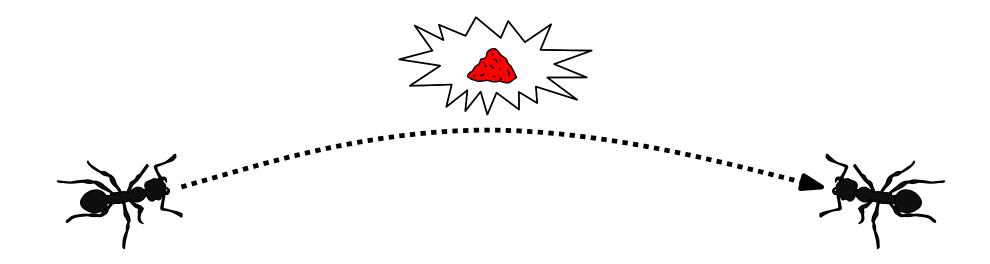
• "Small Deviations"

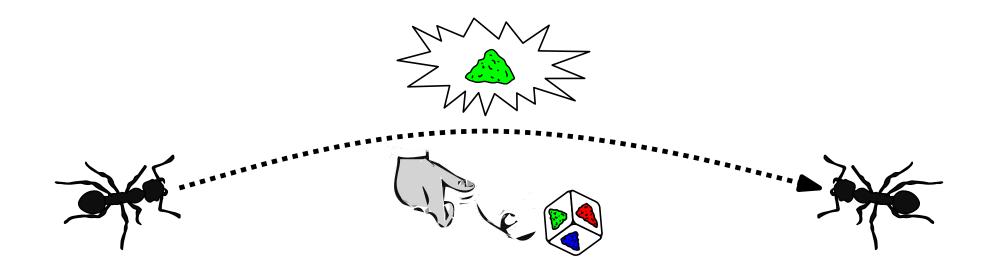


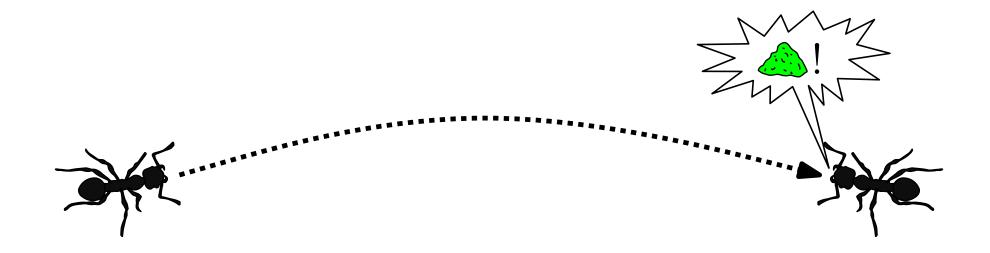
• "Small Deviations"











Noise Matrix:

$$\sim P := \begin{pmatrix} p_{\bullet, \bullet} & p_{\bullet, \bullet} & p_{\bullet, \bullet} \\ p_{\bullet, \bullet} & p_{\bullet, \bullet} & p_{\bullet, \bullet} \\ p_{\bullet, \bullet} & p_{\bullet, \bullet} & p_{\bullet, \bullet} \end{pmatrix}$$

Noise Matrix:

$$\sim P := \begin{pmatrix} p_{\bullet, \bullet} & p_{\bullet, \bullet} & p_{\bullet, \bullet} \\ p_{\bullet, \bullet} & p_{\bullet, \bullet} & p_{\bullet, \bullet} \\ p_{\bullet, \bullet} & p_{\bullet, \bullet} & p_{\bullet, \bullet} \end{pmatrix}$$

Configuration $\mathbf{c} := (\# / n, \# / n, \# / n)$

 δ -majority-biased configuration w.r.t.

$$\# /n - \# /n > \delta$$

$$\# /n - \# /n > \delta$$

Main Result

 ε -majority-preserving noise matrix:

$$(\mathbf{c}P)_{\wedge} - (\mathbf{c}P)_{\wedge} > \varepsilon\delta$$
$$(\mathbf{c}P)_{\wedge} - (\mathbf{c}P)_{\wedge} > \varepsilon\delta$$

Main Result

 ε -majority-preserving noise matrix:

$$(\mathbf{c}P)_{\wedge} - (\mathbf{c}P)_{\wedge} > \varepsilon\delta$$
$$(\mathbf{c}P)_{\wedge} - (\mathbf{c}P)_{\wedge} > \varepsilon\delta$$

Theorem. Let S be the initial set of agents with opinions in [k]. Suppose that the noise matrix P is ϵ -majority-preserving and S is $\Omega(\sqrt{\log n/|S|})$ -majority-biased with $|S| = \Omega(\frac{\log n}{\epsilon^2})$. Then the rumor spreading and plurality consensus problems can be solved in $O(\frac{\log n}{\epsilon^2})$ rounds w.h.p., with $O(\log \log n + \log \frac{1}{\epsilon})$ memory per node.

Main Result

 ε -majority-preserving noise matrix:

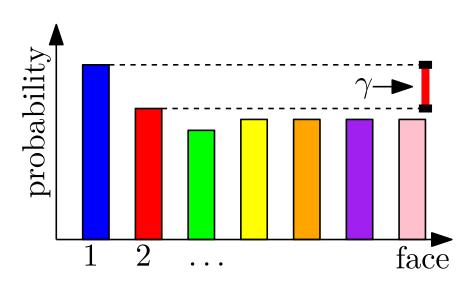
$$(\mathbf{c}P)_{\wedge} - (\mathbf{c}P)_{\wedge} > \varepsilon\delta$$
$$(\mathbf{c}P)_{\wedge} - (\mathbf{c}P)_{\wedge} > \varepsilon\delta$$

Theorem. Let S be the initial set of agents with opinions in [k]. Suppose that the noise matrix P is ϵ -majority-preserving and S is $\Omega(\sqrt{\log n/|S|})$ -majority-biased with $|S| = \Omega(\frac{\log n}{\epsilon^2})$. Then the rumor spreading and plurality consensus problems can be solved in $O(\frac{\log n}{\epsilon^2})$ rounds w.h.p., with $O(\log \log n + \log \frac{1}{\epsilon})$ memory per node.

$$P = \begin{pmatrix} 1/2 + \varepsilon & 1/2 - \varepsilon \\ 1/2 - \varepsilon & 1/2 + \varepsilon \end{pmatrix} \implies \text{Feinerman et al.}$$

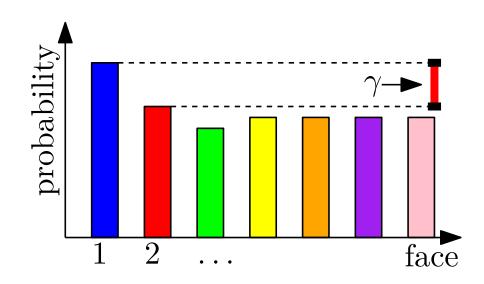
Probability Amplification

A dice with k faces is thrown ℓ times.



Probability Amplification

A dice with k faces is thrown ℓ times.



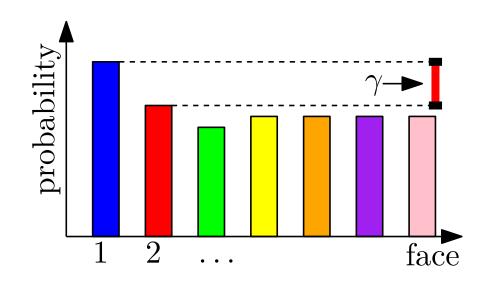
 $\mathcal{M} := \text{most frequent face in the } \ell \text{ throws}$ (breaking ties at random).

For any $j \neq 1$

$$\Pr\left(\mathcal{M}=1\right) - \Pr\left(\mathcal{M}=j\right) \ge \operatorname{const} \cdot \sqrt{\ell} \, \gamma (1-\gamma^2)^{\frac{\ell-1}{2}}$$

Probability Amplification

A dice with k faces is thrown ℓ times.



 $\mathcal{M} := \text{most frequent face in the } \ell \text{ throws}$ (breaking ties at random).

For any $j \neq 1$

$$\Pr\left(\mathcal{M}=1\right) - \Pr\left(\mathcal{M}=j\right) \ge \operatorname{const} \cdot \sqrt{\ell} \, \gamma (1-\gamma^2)^{\frac{\ell-1}{2}}$$

•open problem: const $\approx e^{-\Theta(k)}$

Binomial vs Beta

Given $p \in (0,1)$ and $0 \le j \le \ell$ it holds

$$\Pr(Bin(n,p) \le j) = \sum_{j < i \le \ell} {\ell \choose i} p^{i} (1-p)^{\ell-i}$$

$$= {\ell \choose j+1} (j+1) \int_{0}^{p} z^{j} (1-z)^{\ell-j-1} dz$$

$$= \Pr(Beta(n-k,k+1) < 1-p).$$

Binomial vs Beta

Given $p \in (0,1)$ and $0 \le j \le \ell$ it holds

$$\Pr(Bin(n,p) \le j) = \sum_{j < i \le \ell} {\ell \choose i} p^{i} (1-p)^{\ell-i}$$

$$= {\ell \choose j+1} (j+1) \int_{0}^{p} z^{j} (1-z)^{\ell-j-1} dz$$

$$= \Pr(Beta(n-k,k+1) < 1-p).$$

Multinomial vs Dirichlet?

