Bejeweled, Candy Crush and other Match-Three Games are (NP-)Hard

Luciano Gualà, Stefano Leucci, Emanuele Natale

University of Rome Tor Vergata, University of L'Aquila, Sapienza University of Rome

IEEE Conference on Computational Intelligence and Games Dortmund, 26-29 August 2014

The Computational Complexity of Games

Given a game A that is engaging to play, it is often the case that each problem B in the complexity class NP (or in PSPACE) can be trasformed (i.e. reduced) in polinomial time to an instance M of A such that you can solve B by playing M. (Kendall '08, Hearn '09, Forišek '10, Viglietta '12).

Casual Games

New public of casual players looking for "soft" gaming:

- easy to playsimple rules;
- engagingcomplex structure.

Casual Games

New public of casual players looking for "soft" gaming:

- easy to playsimple rules;
- engagingcomplex structure.

A big class of Casual Games:

Match Three Games.

The Match-Three Game: Bejeweled

- Played on a 8 × 8 grid filled with gems of 6 types.
- Three or more vertically or horizontally aligned and contiguous gems are said to form a match.

The Match-Three Game: Bejeweled

The game mechanic:

- Moving phase: The player swap two (vertically or horizontally) adjacent gems provided that doing so will create a match, then the popping phase take place. If it is not possible to make such a move, the game is over.
- Popping phase: As there is any match, the matched gems pop simultaneously and the remaining gems fall filling the empty space; when there are no more matches, the moving phase take place.

General Bejeweled

Bejeweled played on a $n \times n$ grid (still 6 gems only!).

Main decision problem

Can we pop a specific gem? Implies:

- Can we get a score of at least s?
- Can we get a score of at least s in less than k moves?
- Can we cause at least p gems to pop?
- Can we play for at least t turns?

General Bejeweled

Bejeweled played on a $n \times n$ grid (still 6 gems only!).

Main decision problem

Can we pop a specific gem?

Main difficulty

Pops affects everything above.

General Bejeweled

Bejeweled played on a $n \times n$ grid (still 6 gems only!).

Main decision problem

Can we pop a specific gem?

Main difficulty

Pops affects everything above.

General Bejeweled

Bejeweled played on a $n \times n$ grid (still 6 gems only!).

Main decision problem

Can we pop a specific gem?

Main difficulty

Pops affects everything above.

General Bejeweled

Bejeweled played on a $n \times n$ grid (still 6 gems only!).

Main decision problem

Can we pop a specific gem?

Main difficulty

Pops affects everything above.

Strategy

- Preserve structure by modularity
- Make swaps irreversible

The Reduction from 1-in-3 Positive SAT

Instance

- n variables x_1, \ldots, x_n ;
- m clauses with at most 3 variables each.

Goal

An assignment that satisfies all clauses by setting exactly one variable to true for each of them.

Example

Instance:

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_4 \lor x_5)$$

Bad assignment:

$$\begin{cases} x_1, x_2 & \leftarrow \textit{true} \\ x_3, x_4, x_5 & \leftarrow \textit{false} \end{cases}$$

Good assignment:

$$\begin{cases} x_2 & \leftarrow \textit{true} \\ x_1, x_3, x_4, x_5 & \leftarrow \textit{false} \end{cases}$$

The Reduction from 1-in-3 Positive SAT

Instance

- n variables x_1, \ldots, x_n ;
- m clauses with at most 3 variables each.

Goal

An assignment that satisfies all clauses by setting exactly one variable to true for each of them.

1-in-3 positive SAT embedding in Bejeweled:

Choice wire

Sequencer

Goal wire

Choice wire

The choice wire is either activated or skipped by swapping a gem in the choice activator. The activation shift some *clause column* by two rows, constructing a truth assignment.

Sequencer

Goal wire

Choice wire

Sequencer

The sequencer make possible only to swap gems placed in the choice activator (from the topmost to the bottommost).

Goal wire

Choice wire

Sequencer

Goal wire

Toward the end of the game, an activating gem ends up in the check point. A sequence of swaps/pops reaching the goal gem along the goal wire will take place if and only if all clause are satisfied.

The Gadgets - Filler and Sequencer

In the filling pattern no match can be formed, even if the column fall by different amounts.

```
1 2 3 4 5 6 7
CECECEC
DFDFDFD
CECECEC
DFDFDFD
CECECEC
```

The Gadgets - Filler and Sequencer

In the filling pattern no match can be formed, even if the column fall by different amounts.

1 2 3 4 5 6 7 CECECEC
DFDFDFDCECECECEC
DFDFDFDFD
CECECECEC
DFDFDFD
CECECECEC

The sequencer controls the order in which the other gadgets are activated.

Δ CRR · · $CAA \cdot \cdot$ CAABB

The Gadgets - The Choice Wire

Each choice wire corresponds to a variable x_i ; if activated, it sets x_i to true by making all clauses containing x_i fall by some number $l \equiv 2 \pmod{6}$ (while others fall by multiplies of 6).

The Gadgets - The Goal Wire

Once we have traversed all the variable gadgets, the sequencer gives the "control" to the goal wire.

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
. . . <u>A</u> . . . . . . . . . . <u>A</u> . . . . <u>A</u> . . . . . .
. . . A . . . . . . . . . A . . . . A . . . . B A A
· · · · B A A · · · · · · · · A · · · B A A · · ·
```

The goal wire ensure that the goal gem can be reached from the check point only if the choice wire activations result in a satisfying assignment.

The Gadgets - The Goal Wire

Once we have traversed all the variable gadgets, the sequencer gives the "control" to the goal wire.

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
. . . A . . . B A A . . . . . . . . . A . . . B A A
· · · · B A A · · · · · · · · A · · · B A A · · ·
```

The goal wire ensure that the goal gem can be reached from the check point only if the choice wire activations result in a satisfying assignment.

Open Questions

What about the complexity of Bejeweled with only 5 kind of gems (or even less)?

Open Questions

What about the complexity of Bejeweled with only 5 kind of gems (or even less)?

What about other match-three-games (no swaps, no square grid, \dots e.g. Puzzle Bobble)?

Open Questions

What about the complexity of Bejeweled with only 5 kind of gems (or even less)?

What about other match-three-games (no swaps, no square grid, \dots e.g. Puzzle Bobble)?

Is Bejeweled PSPACE-complete?