TREVISAN'S CONTRIBUTIONS TO DISTRIBUTED COMPUTING

LucaFest 8 October 2024

LUCA AND ROMAN CS

- 1993. First BSc degree in CS at Sapienza University
- Most coauthored papers with
 - Luca (Romans highlighted):
 - 1. Andrea Clementi (22)
 - 2. Francesco(10)Pasquale (15)7. Shayan Oveis
 - 3. Salil P. Vadhan (15)

4. Luca Becchetti (14)

- 5. Madhu Sudan (10)
- 6. Pierluigi
 Crescenzi
 (10)
 7. Shayan Ove
 Gharan (8)
 8. Emanuele
 Natale (8)
 9. Riccardo
 - Silvestri (8)

10. ...

LUCA & ME

- Meeting in Rome since 2013
- 2016. Simons' Counting Complexity and Phase Transitions Program
- 2018. Simons' The Brain and Computation Program

ROMANS + LUCA T

- Simple dynamics for plurality consensus. SPAA 2014.
- Stabilizing Consensus with Many Opinions. SODA 2016.
- Find Your Place: Simple Distributed Algorithms for Community Detection. SODA 2017.
- Average Whenever You Meet: Opportunistic Protocols for Community Detection. ESA 2018.
- Finding a Bounded-Degree Expander Inside a Dense One. SODA 2020.
- Consensus vs Broadcast, with and Without Noise. ITCS 2020.
- Expansion and Flooding in Dynamic Random Networks with Node Churn. ICDCS 2021.
- Percolation and Epidemic Processes in One-Dimensional Small-World Networks. LATIN 2022.
- Bond Percolation in Small-World Graphs with Power-Law Distribution. SAND 2023.
- On the Role of Memory in Robust Opinion Dynamics. IJCAI 2023.
- The Minority Dynamics and the Power of Synchronicity. SODA 2024.

COMPUTATION IN SIMPLE SYSTEMS

A computational lens on how global behavior emerges from simple local interactions among individuals

LUCA'S WORK ON SOME DYNAMICS

PULL Model. At each round each agent observes the state of *h* other randomly chosen agents

LUCA'S WORK ON SOME DYNAMICS

PULL Model. At each round each agent observes the state of *h* other randomly chosen agents

- Anonymous agents
- few possible states
- simple update function f of observed agents

LUCA'S WORK ON SOME DYNAMICS

PULL Model. At each round each agent observes the state of *h* other randomly chosen agents

- Anonymous agents
- few possible states
- simple update function f of observed agents

More on Dynamics:

- Becchetti et al. *Consensus Dynamics: An Overview*. 2020.
- Mossel & Tamuz. *Opinion exchange dynamics*. 2017.
- Shah. *Gossip Algorithms*. 2007.

MAJORITY DYNAMICS

What's the convergence time with *k* colors?

MAJORITY DYNAMICS

What's the convergence time with k colors?

Theorem [SPAA'14, SODA '16]. *n* agents, *k* colors:

- From configuration with bias $\Omega(\sqrt{kn\log n})$, 3-Majority converges to plurality in $O(k\log n)$ rounds w.h.p.
- *h*-Majority requires $\Omega(k/h^2)$ to converge
- 3-Majority reaches almost-consensus even against $\tilde{\mathcal{O}}(n^{\Theta(1)})$ adversary.

COMMUNITY DETECTION

Stochastic Block Model (SBM). Communities V_1 and V_2 of size n/2 such that:

COMMUNITY DETECTION

Stochastic Block Model (SBM). Communities V_1 and V_2 of size n/2 such that:

Reconstruction

Problem. Given a graph generated by the SBM, reconstruct original partition.

COMMUNITY DETECTION

Stochastic Block Model (SBM). Communities V_1 and V_2 of size n/2 such that:

Reconstruction

Problem. Given a graph generated by the SBM, reconstruct original partition.

Exact reconstruction **possible** if $\sqrt{p} - \sqrt{q} = \sqrt{2 \log n/n}$ (cfr. survey *Abbe 2017 JMLR*).

COMMUNITY DETECTION FASTER THAN MIXING TIME

• Community structure encoded in eigenvectors

COMMUNITY DETECTION FASTER THAN MIXING TIME

- Community structure encoded in eigenvectors
- Efficiently computing them requires mixing time*

★: time it takes for a random walk to converge to stationary distribution

COMMUNITY DETECTION FASTER THAN MIXING TIME

- Community structure encoded in eigenvectors
- Efficiently computing them requires mixing time*
- Reconstruction should be easy when mixing time large...
- ★: time it takes for a random walk to converge to stationary distribution

AVERAGING DYNAMICS

AVERAGING DYNAMICS

AVERAGING DYNAMICS

After **mixing time** averaging converges to weighted global average [Boyd et al. 2006].

BREAKING SYMMETRY AMONG COMMUNITIES

BREAKING SYMMETRY AMONG COMMUNITIES

COMMUNITY DETECTION WITH AVERAGING DYNAMICS

COMMUNITY DETECTION WITH AVERAGING DYNAMICS

COMMUNITY DETECTION WITH AVERAGING DYNAMICS

At t=0, randomly pick value $x(t)\in\{+1,-1\}$. Then, at each round:

- Set value x(t) to average of neighbors,
- At each step, set label to blue if x(t) < x(t-1), red otherwise.

AVERAGING DYNAMICS ON THE SBM

Theorem [SIAM J. Comp. 2020]. Let G be a connected (2n, d, b)-clustered regular graph with 2nd eigenvalue $\lambda_2 > (1 + \varepsilon) \max_{i \ge 3} |\lambda_i|$ for some $\varepsilon > 0$. Then Averaging yields strong reconstruction within $\mathcal{O}(\log n)$ rounds w.h.p.

At each round a **random edge** is chosen and the two corresponding agents interact.

At each round a **random edge** is chosen and the two corresponding agents interact.

Can we leverage the Averaging Dynamics?

At each round a **random edge** is chosen and the two corresponding agents interact.

Can we leverage the Averaging Dynamics?

Asynchronous Averaging. If (u, v)activates at time t then $x_u(t) = x_v(t) = \frac{x_u(t-1) + x_v(t-1)}{2}$ [Boyd et al. 2006].

At each round a **random edge** is chosen and the two corresponding agents interact.

Can we leverage the Averaging Dynamics?

Asynchronous Averaging. If (u, v)activates at time t then $x_u(t) = x_v(t) = \frac{x_u(t-1) + x_v(t-1)}{2}$ [Boyd et al. 2006].

Process variance causes issues...

At each round a **random edge** is chosen and the two corresponding agents interact.

Can we leverage the Averaging Dynamics?

Asynchronous Averaging. If (u, v)activates at time t then $x_u(t) = x_v(t) = \frac{x_u(t-1) + x_v(t-1)}{2}$ [Boyd et al. 2006].

Process variance causes issues... (in 2018).

CSL. Run *m*

independent copies of

the Averaging. Each node u at time t has

signature:

 $\mathrm{sign}(x_u^{(1)}\!(t))$ sign

CSL. Run mindependent copies of the Averaging. Each node u at time t has signature: $\left(sign(x_{u}^{(1)}(t)) \\ \dots \\ sign(x_{u}^{(m)}(t)) \right)$

Thm (Romans+P. Manurangsi+P. Raghavendra). G regular SBM s.t. $d\epsilon^4 \gg b \log n$. After $\Theta(\log n)$ rounds CSL with $m = \Theta(\epsilon^{-1} \log n)$ labels all nodes but $\leq \sqrt{\epsilon n}$ s.t. labels • agree $> \frac{5}{6}$ in same community • disagree $< \frac{5}{6}$ in different

communities

THANK YOU

and thanks to Luca, from all his Roman colleagues

