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Roadmap
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• Intro to Computational Dynamics

• Community Detection via Asynchronous
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Schools of fish
[Sumpter et al. ’08]

Insects colonies
[Franks et al. ’02]

Flocks of birds
[Ben-Shahar et al. ’10]

Biological Systems
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To go beyond this talk:
• Becchetti et al. Consensus Dynamics: An

Overview. 2020.
• Mossel & Tamuz. Opinion exchange

dynamics. 2017.
• Shah. Gossip Algorithms. 2007.
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Very simple distributed algorithms: For every graph,
agent and round, states are updated according to
fixed rule of current state and symmetric function of
states of neighbors.

(in
fo

rm
al

)

Examples of Dynamics

• 3-Median dynamics
• 3-Majority dynamics
• Undecided-state dynamics

• Averaging dynamics

=⇒

??
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The Power of Dynamics: Plurality Consensus

• 3-Median dynamics [Doerr et al. ’11]. Converge to
O(
√
n logn) approximation of median of system in

O(logn) rounds w.h.p., even if O(
√
n) states are

arbitrarily changed at each round (O(
√
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adversary).
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• 3-Median dynamics [Doerr et al. ’11]. Converge to
O(
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n logn) approximation of median of system in

O(logn) rounds w.h.p., even if O(
√
n) states are

arbitrarily changed at each round (O(
√
n)-bounded

adversary).

• 3-Majority dynamics [SPAA ’14, SODA ’16]. If
plurality has bias O(

√
kn logn), converges to it in

O(k logn) rounds w.h.p., even against
o(
√
n/k)-bounded adversary. Without bias, converges

in poly(k). h-majority converges in Ω(k/h2).
• Undecided-State dynamics [SODA ’15]. If

majority/second-majority (cmaj/c2ndmaj) is at least
1 + ε, system converges to plurality within
Θ̃(
∑k
i=1

(
c
(0)
i /c
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maj
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) rounds w.h.p.
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Dynamics can solve Consensus, Median, Majority,
in robust and fault tolerant ways, but this is trivial
in centralized setting.
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The Median, the Mode and... the Mean

Dynamics can solve Consensus, Median, Majority,
in robust and fault tolerant ways, but this is trivial
in centralized setting.

Can dynamics solve a problem non-trivial in
centralized setting?
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Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with 2n nodes.
Output: S = arg min

S⊂V
|S|=n

E(S, V − S).

[Garey, Johnson, Stockmeyer ’76]:
Min-Bisection is NP-Complete.
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The Stochastic Block Model

Stochastic Block Model (SBM). Two
“communities” of equal size V1 and V2, each edge
inside a community included with probability
p = a

n , each edge across communities included with
probability q = b

n < p.

q
p p
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Reconstruction problem. Given graph generated
by SBM, find original partition.
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The Stochastic Block Model

Reconstruction problem. Given graph generated
by SBM, find original partition.

qp p∼

Exact reconstruction
possible if√
p−√q ≥

√
2 logn/n

(cfr. survey Abbe 2017 JMLR)
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Community Detection via Averaging Dynamics

Who are my
friends?

Local view of a node:

Node’s
value

Local view of a node:



10 - 6

Community Detection via Averaging Dynamics

t

−1

+1

· · ·
α

Va
lu
e



10 - 7

Community Detection via Averaging Dynamics

t

−1

+1

· · ·
α

Va
lu
e

v1, ..., vn eigenvectors of
random walk matrix P :
v1 = 1 = (1, ..., 1)
v2 ≈ χ = (1, ..., 1,−1, ...,−1)

“nice”
graph
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Community Detection via Averaging Dynamics

[SODA ’17](Informal). G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of eigenvalue
λ2 of transition matrix of G, and
ii) gap between λ2 and λ = max{λ3, |λn|} large enough,
then Averaging (approximately) identifies (V1, V2) in
O(logn) rounds
(even when mixing time is polynomial!)
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The Averaging Dynamics in the LOCAL Model

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

– Set value x(t) to
average of neighbors,

– Set label to blue if
x(t) < x(t−1), red
otherwise.
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time of G,
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fault-tolerant self-stabilizing
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The Averaging Dynamics in the LOCAL Model

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

– Set value x(t) to
average of neighbors,

– Set label to blue if
x(t) < x(t−1), red
otherwise.

Well studied process [Shah ’09]:
• Converges to (weighted) global

average of initial values,
• Convergence time = mixing

time of G,
• Important applications in

fault-tolerant self-stabilizing
consensus.

P transition matrix
of random walk

Averaging
is a linear
dynamics

x(t) =
x(t) = P · x(t−1) = P t · x(0)

( )
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Toy Case: Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al.
SODA’16]. A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G

∣∣
V1
, G
∣∣
V2
∼ random a-regular graphs

• G
∣∣
E(V1,V2) ∼ random b-regular bipartite graph.

4-regular 4-regular
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⋃̇
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• |V1| = |V2|,
• G

∣∣
V1
, G
∣∣
V2
∼ random a-regular graphs

• G
∣∣
E(V1,V2) ∼ random b-regular bipartite graph.

4-regular 4-regular
2-regular bipartite
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Analysis on Regular SBM

P
symmetric =⇒ orthonormal
eigenvectors v1, ...,vn and real
eigenvalues λ1, ..., λn.
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Analysis on Regular SBM

P

x(t) = P t · x(0) =
∑
i λ

t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,vn and real
eigenvalues λ1, ..., λn.

v1 = 1√
n

1 with (largest) eigenvalue 1

Regular SBM =⇒ P 1√
n
χ = (a−ba+b ) ·

1√
n
χ


· · · · · · · · · · · · · · · · · ·
· · · a “1”s · · · · · · b “1”s · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · b “1”s · · · · · · a “1”s · · ·
· · · · · · · · · · · · · · · · · ·

 ·


1
...
1
−1
...
−1


=



1
...
1
−1
...
−1


1
a+b

a−b
a+b
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P

x(t) = P t · x(0) =
∑
i λ

t
i(v

ᵀ
i x(0))vi

symmetric =⇒ orthonormal
eigenvectors v1, ...,vn and real
eigenvalues λ1, ..., λn.

v1 = 1√
n

1 with (largest) eigenvalue 1

Regular SBM =⇒ P 1√
n
χ = (a−ba+b ) ·

1√
n
χ

W.h.p. max{λ3, |λn|}(1 + δ) < a−b
a+b = λ2, then

x(t) = 1
n

(1ᵀx(0))1 +
(a− b
a+ b

)t 1
n

(χᵀx(0))χ+ e(t)

with ‖e(t)‖ ≤ (max{λ3, |λn|})t
√
n
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W.h.p. max{λ3, |λn|}(1 + δ) < a−b
a+b = λ2, then

x(t) = 1
n

(1ᵀx(0))1 +
(a− b
a+ b

)t 1
n

(χᵀx(0))χ+ e(t)

with ‖e(t)‖ ≤ (max{λ3, |λn|})t
√
n

1
n

∑
u∈V x(0)(u)

1
n

∑
u∈V1

x(0)(u)− 1
n

∑
u∈V2

x(0)(u)

+
+

+

+

+
+

+
++ ++

+
+

+ +
+

++ =

+
+

+

+

+
+

+
++ ++

+
+

+ +
+

+− = −
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Analysis on Regular SBM

x(t) = 1
n

(1ᵀx(0))1 +
( a− b
a+ b︸ ︷︷ ︸
=λ2

)t 1
n

(χᵀx(0))χ+ e(t)
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n
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o(λt
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Analysis on Regular SBM

x(t) = 1
n

(1ᵀx(0))1 +
( a− b
a+ b︸ ︷︷ ︸
=λ2

)t 1
n

(χᵀx(0))χ+ e(t)

x(t) − x(t−1) = (χᵀx(0))λt−1
2 (λ2 − 1)χ + e(t) − e(t−1)︸ ︷︷ ︸

o(λt
2) if t=Ω(logn)

sign(x(t)(u)− x(t−1)(u)) ∝ sign(χ(u))



14

Roadmap

• 2-Choices on Clustered Graphs & Evolution

• Community Detection via Synchronous Averaging

• Intro to Computational Dynamics

• Community Detection via Asynchronous
Averaging



15 - 1

Communication Model: Population Protocol

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(



15 - 2

Communication Model: Population Protocol

Population protocol: at each round a random edge
is chosen and the two corresponding agent interact.

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(



15 - 3

Communication Model: Population Protocol

Population protocol: at each round a random edge
is chosen and the two corresponding agent interact.

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(



15 - 4

Communication Model: Population Protocol

Population protocol: at each round a random edge
is chosen and the two corresponding agent interact.

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(



15 - 5

Communication Model: Population Protocol

Population protocol: at each round a random edge
is chosen and the two corresponding agent interact.

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(



15 - 6

Communication Model: Population Protocol

Population protocol: at each round a random edge
is chosen and the two corresponding agent interact.

Averaging Dynamics in LOCAL Model:
O(d) messages per round :-(



16 - 1

Sparsification of the Averaging Dynamics

!!!: The variance of picking a random
edge breaks the monotonicity and
seems to prevent concentration.



16 - 2

Sparsification of the Averaging Dynamics

Can we sparsify the process?
=⇒ Do averaging only over some random edges.

!!!: The variance of picking a random
edge breaks the monotonicity and
seems to prevent concentration.



16 - 3

Sparsification of the Averaging Dynamics

Can we sparsify the process?
=⇒ Do averaging only over some random edges.

x(t) = P (t) · x(t−1) = P (t) · · · · · P (1) · x(0)

Random matrices!

!!!: The variance of picking a random
edge breaks the monotonicity and
seems to prevent concentration.



16 - 4

Sparsification of the Averaging Dynamics

Can we sparsify the process?
=⇒ Do averaging only over some random edges.

x(t) = P (t) · x(t−1) = P (t) · · · · · P (1) · x(0)

Random matrices!
Expected behavior:

E
[
x(t) |x(0)] = E [P ] ·E

[
x(t−1) |x(0)] = (E [P ])t · x(0)

!!!: The variance of picking a random
edge breaks the monotonicity and
seems to prevent concentration.



16 - 5

Sparsification of the Averaging Dynamics

Can we sparsify the process?
=⇒ Do averaging only over some random edges.

x(t) = P (t) · x(t−1) = P (t) · · · · · P (1) · x(0)

Random matrices!
Expected behavior:

E
[
x(t) |x(0)] = E [P ] ·E

[
x(t−1) |x(0)] = (E [P ])t · x(0)

Problem: can’t use concentration tools for matrix products
(cfr. use of Matrix Freedman ineq. by Kathuria et al. 2020)

!!!: The variance of picking a random
edge breaks the monotonicity and
seems to prevent concentration.
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Community Sensitive Labeling

CSL(m,T ):
• At the outset x(0)

u ∼ Unif({−1,+1}m).

• In each round, the endpoints of the random edge choose a
random index j ∈ [m] and set

xu(j) = xv(j) = xu(j) + xv(j)
2 ;

• At the T -th update of j-th component,
u sets hu(j) = sgn(xu(j)).

(cfr [Boyd et al. ’06]).
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CSL(m,T ):
• At the outset x(0)

u ∼ Unif({−1,+1}m).

• In each round, the endpoints of the random edge choose a
random index j ∈ [m] and set

xu(j) = xv(j) = xu(j) + xv(j)
2 ;

• At the T -th update of j-th component,
u sets hu(j) = sgn(xu(j)).

(cfr [Boyd et al. ’06]).

Thm. G = (V1
⋃̇
V2, E) regular SBM s.t. dε4 � b log2 n, then

CSL(m,T ) with m = Θ(ε−1 logn) and T = Θ(logn) labels all
nodes but a set U with size |U | ≤

√
εn, in such a way that

• the labels of nodes in the same community agree on at
least 5/6 entries, and

• the labels of nodes in different communities differ in more
than 1/6 entries.



17 - 3

Community Sensitive Labeling

Warning: not a dynamics!

+
−
+
+
−
+

+
−
−
+
−
+

+
−
+
−
−
+

−
+
−
−
+
−

−
+
+
−
−
−

−
+
+
−
−
−

Example:

> 2 different labels
=⇒ foes!

≤ 2 different labels
=⇒ friends!
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Evolutionary Dynamics on Graphs
[Lieberman, Hauert & Nowak, Nature ’05]:

A node is selected randomly according to its fitness and it
replaces a random neighbor

Picture from Lieberman et al.
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The Moran Process and Fixation Probability

[Giakkoupis ’16, Galanis et al. J. ACM ’17, Goldberg et
al.x2 ’18, Pavlogiannis et al. Comm. Bio. ’18]:
Probability that a mutant with fitness r conquers a
population with fitness 1 on a family of graphs {Gn}n.
Are there families Gn with probability 1− on(1)?

Picture from Pavlogiannis et
al.
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The Speed of Speciation

“What is needed now is a shift in focus to identifying more general rules
and patterns in the dynamics of speciation. The crucial step in achieving
this goal is the development of simple and general dynamical models that
can be studied not only numerically but analytically as well. [...]
Speciation is expected to be triggered by changes in the environment.
Once genetic changes underlying speciation start, they go to completion
very rapidly.”

[Gavrilets, Evolution ’03]

The Moran process doesn’t provide an explanation for
speciation
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The Speed of Speciation

“What is needed now is a shift in focus to identifying more general rules
and patterns in the dynamics of speciation. The crucial step in achieving
this goal is the development of simple and general dynamical models that
can be studied not only numerically but analytically as well. [...]
Speciation is expected to be triggered by changes in the environment.
Once genetic changes underlying speciation start, they go to completion
very rapidly.”

[Gavrilets, Evolution ’03]

The Moran process doesn’t provide an explanation for
speciation

Problem: A simple evolutionary-graph-theoretic proof of
principle for speciation.
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#neighbors with col. x
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)y
y = 1 =⇒ Voter Dynamics (Moran Process)
y = 2 =⇒ 2-Choices Dynamics
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y-Degree Majority Dynamics

Node gets color x with
probability(

#neighbors with col. x
degree

)y
y = 1 =⇒ Voter Dynamics (Moran Process)
y = 2 =⇒ 2-Choices Dynamics

[Cooper et al.x3, ICALP’14, DISC’15, DISC’17]: 2-Choice
Dynamics can be related to the spectral structure of the
graph! ∑

x∈V

(
B(x)
d

)2
= ‖P1B‖22 ≤

B2

n + λ2B.

B(x) blue neighbors of x, P trans. matrix of graph, 1B indicator vector of
blue-col. nodes, B overall number of blue-col. nodes, λ second-largest eigenvalue
of P
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Metastability of 2-Choices Dynamics

Theorem [Cruciani, N., Scornavacca, AAAI’19].
G d-regular graph divided in 2 clusters, where cut is a
b-regular bipartite graph. Each node initially blue or red
u.a.r. If b/d = O(1/

√
n) and spectral radius of clusters is

O(n− 1
4 ), then with prob. Ω(1), after O(logn) time, clusters

are almost-monochromatic, with different colors, and
remains so for nΩ(1) time w.h.p.
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G d-regular graph divided in 2 clusters, where cut is a
b-regular bipartite graph. Each node initially blue or red
u.a.r. If b/d = O(1/

√
n) and spectral radius of clusters is

O(n− 1
4 ), then with prob. Ω(1), after O(logn) time, clusters

are almost-monochromatic, with different colors, and
remains so for nΩ(1) time w.h.p.

Corollary: LPA. First analytical result on a sparse Label
Propagation Algorithm (class of clustering heuristics).
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Conclusions

Computational dynamics have a rich interaction
with the underlying graph topology:
• synchronous averaging dyn. on SBM
• averaging pop. protocol on SBM
• 2-Choices dynamics on SBM

Open problems. New techniques for
• Analyze majority on non-expander graphs
• Tighter analysis of 2-Choices on RSBM
• .......
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Thank You!
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