
1/22

Emanuele Natale

Finding a Bounded-Degree Expander
Inside a Dense One

13 March 2019

Joint work with L. Becchetti, A. Clementi,
F. Pasquale and L. Trevisan

hal-02002377

2/22

Outline

• Definitions: Graph Expansion

• Motivation for this work

• Our Results

• Crash Course on Encoding Arguments

• Some Proof Ideas

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?
• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?
• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|
Problem: big sets are better than small ones

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?
• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|
Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?
• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|
Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

Problem: Very big sets have big vol(S)

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?
• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|
Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

Problem: Very big sets have big vol(S)

• Attempt 3. We consider the “worst” between
S and V − S: e(S,V−S)

min{vol(S),vol(V−S)}

3/22

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?
• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|
Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

Problem: Very big sets have big vol(S)

• Attempt 3. We consider the “worst” between
S and V − S: e(S,V−S)

min{vol(S),vol(V−S)} conductance
Examples: Giakkoupis et al. JACM’18 and Giakkoupis
SODA’14 for another expansion measure.

4/22

Graph Expansion II

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

4/22

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

4/22

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

Graph G is ε-expander if minS φ(S) ≥ ε

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

4/22

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

Graph G is ε-expander if minS φ(S) ≥ ε

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

Example:
In an Erős-Rényi graph Gn,p,
include each edge with prob p.

4/22

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

Graph G is ε-expander if minS φ(S) ≥ ε

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

Example:
In an Erős-Rényi graph Gn,p,
include each edge with prob p.
For any p� logn

n , they are good
expanders with high probability.

5/22

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

5/22

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

5/22

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

Proof. A adjacency matrix, 1S indicator vector of S,
J all-1 matrix. We observe

2e(S, S) = 1TSA1S and 1TS (∆
n J)1S = ∆

n |S|

5/22

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

Proof. A adjacency matrix, 1S indicator vector of S,
J all-1 matrix. We observe

2e(S, S) = 1TSA1S and 1TS (∆
n J)1S = ∆

n |S|
Hence
2e(S, S)− ∆

n |S| = 1TS (A− ∆
n J)1S ≤ λ||1S ||2 = λ|S|

λ is the largest eigenvalue

6/22

Motivations for this Work I

Distributed construction of constant-degree expanders
• Corollary of Marcus-Spielman-Srivastava proof’s of the

Kadison-Singer conjecture [Ann. of Math. ’15]:
Every dense expander has a constant-degree subgraph which
is also an expander.

6/22

Motivations for this Work I

Distributed construction of constant-degree expanders
• Corollary of Marcus-Spielman-Srivastava proof’s of the

Kadison-Singer conjecture [Ann. of Math. ’15]:
Every dense expander has a constant-degree subgraph which
is also an expander.
But the proof is non-constructive.

6/22

Motivations for this Work I

u v

zw

u v

zw

Distributed construction of constant-degree expanders

• Several works propose complicated distributed construction
of expanders:
– Law and Siu [INFOCOM’03]: incremental construction

using Hamiltonian cycles
– Allen-Zhu et al. [SODA’16]: start with a

Ω(logn)-regular graph and increase its expansion

• Corollary of Marcus-Spielman-Srivastava proof’s of the
Kadison-Singer conjecture [Ann. of Math. ’15]:
Every dense expander has a constant-degree subgraph which
is also an expander.
But the proof is non-constructive.

6/22

Motivations for this Work I

u v

zw

u v

zw

Distributed construction of constant-degree expanders

• Several works propose complicated distributed construction
of expanders:
– Law and Siu [INFOCOM’03]: incremental construction

using Hamiltonian cycles
– Allen-Zhu et al. [SODA’16]: start with a

Ω(logn)-regular graph and increase its expansion

• Corollary of Marcus-Spielman-Srivastava proof’s of the
Kadison-Singer conjecture [Ann. of Math. ’15]:
Every dense expander has a constant-degree subgraph which
is also an expander.
But the proof is non-constructive.

7/22

Bonus Motivation II

• Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

7/22

Bonus Motivation II

• Model the way nodes create
bounded-degree overlay
networks in real distributed
protocols, such as in
peer-to-peer protocols
(BitTorrent) or in distributed
ledger protocols (Bitcoin)

• Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

7/22

Bonus Motivation II

• Model the way nodes create
bounded-degree overlay
networks in real distributed
protocols, such as in
peer-to-peer protocols
(BitTorrent) or in distributed
ledger protocols (Bitcoin)

• A distributed construction of a constant-degree graph
implies a constant-load balancing algorithm.
Previous works obtain almost-tight load balancing in
polynomial time (Berenbrink et al., SPAA’14)

• Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

8/22

Our Algorithm: RAES

Example
with d = 5 u

v

w

u is missing 2 connections.
u asks to connect to w and v.
v has already cd incoming connections
and refuses u’s requests.

9/22

Our Result

Theorem.
For every d� 1, 0 < α ≤ 1, c� 1

α2 , and
αn-regular graph G, w.h.p. RAES(G, d, c) runs
in O(logn) parallel rounds with message
complexity is O(n).
Moreover, if G’s 2nd-largest eigenvalue λ of
normalized adjacency matrix is ≤ εα2, then
w.h.p. RAES(G, d, c) creates a ε-expander with
degrees between d and d(c+ 1).

9/22

Our Result

Theorem.
For every d� 1, 0 < α ≤ 1, c� 1

α2 , and
αn-regular graph G, w.h.p. RAES(G, d, c) runs
in O(logn) parallel rounds with message
complexity is O(n).
Moreover, if G’s 2nd-largest eigenvalue λ of
normalized adjacency matrix is ≤ εα2, then
w.h.p. RAES(G, d, c) creates a ε-expander with
degrees between d and d(c+ 1).

Proof Technique: Encoding Argument
(omitted: message complexity using martingale theory)

10/22

Encoding Arguments

Encoding Lemma.
If X finite set and
C : X → {0, 1}∗ a (partial &
prefix-free) encoding of X then

Pr
x∼Unif(X)

(|C(x)| ≤ log |X| − s) ≤ 2−s

10/22

Encoding Arguments

Encoding Lemma.
If X finite set and
C : X → {0, 1}∗ a (partial &
prefix-free) encoding of X then

Proof. 2log |X|−s

|X| ≤ 2−s.

Pr
x∼Unif(X)

(|C(x)| ≤ log |X| − s) ≤ 2−s

10/22

Encoding Arguments

Suggested reading: P. Morin et al. Encoding
Arguments, ACM Comp. Surveys ’17.

Encoding Lemma.
If X finite set and
C : X → {0, 1}∗ a (partial &
prefix-free) encoding of X then

Proof. 2log |X|−s

|X| ≤ 2−s.

Pr
x∼Unif(X)

(|C(x)| ≤ log |X| − s) ≤ 2−s

11/22

Encoding Argument Example

Flip a coin n times: 0110010 · · · .
Probability of logn+ s consecutive
heads?

11/22

Encoding Argument Example

Flip a coin n times: 0110010 · · · .
Probability of logn+ s consecutive
heads?

Call B a bad substring of logn+ s consecutive heads.
Consider encoding CB for strings containing B:

index i of first
bit of B

all other bits of the string except those at
entry i, i+ 1, . . . , i+ logn+ s)(,

logn bits n− (logn+ s) bits

11/22

Encoding Argument Example

Flip a coin n times: 0110010 · · · .
Probability of logn+ s consecutive
heads?

Call B a bad substring of logn+ s consecutive heads.
Consider encoding CB for strings containing B:

index i of first
bit of B

all other bits of the string except those at
entry i, i+ 1, . . . , i+ logn+ s)(,

logn bits n− (logn+ s) bits

By the Encoding Lemma
Pr(|CB(x)| ≤ log |X|−s) = Pr(|CB(x)| ≤ n−s) ≤ 2−s

12/22

Encoding Arg. for Running Time (Warm Up)

If RAES doesn’t
terminate in
O(logn) rounds
there exist node
v with a rejected
request at each
round

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v
• v’s accepted requests: 2 log d′

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v
• v’s accepted requests: 2 log d′

• position of v’s accepted requests in `v: log
(
`v

d′

)

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v
• v’s accepted requests: 2 log d′

• position of v’s accepted requests in `v: log
(
`v

d′

)
• destinations of accepted requests: d′ log ∆

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v
• v’s accepted requests: 2 log d′

• position of v’s accepted requests in `v: log
(
`v

d′

)
• destinations of accepted requests: d′ log ∆
• destinations of rejected requests: (`v − d′) log n

c

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v
• v’s accepted requests: 2 log d′

• position of v’s accepted requests in `v: log
(
`v

d′

)
• destinations of accepted requests: d′ log ∆
• destinations of rejected requests: (`v − d′) log n

c

Observation: at each round there are at
most n

c rejecting nodes

13/22

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• v’s request `v: 2 log `v
• v’s accepted requests: 2 log d′

• position of v’s accepted requests in `v: log
(
`v

d′

)
• destinations of accepted requests: d′ log ∆
• destinations of rejected requests: (`v − d′) log n

c

Observation: at each round there are at
most n

c rejecting nodes

After calculations we see that we save
1
2`v log(αc)− logn = Ω(logn)

14/22

Encoding Argument for Expansion

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

We show that if
the execution
results in a
non-expander,
then it can be
represented with
ndt log ∆−
Ω(logn) bits

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
Encoding:
• Randomness of V − S

Uncompressed
Nodes in
V − S

Nodes
in S

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

Uncompressed
Nodes in
V − S

Nodes
in S

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

Uncompressed
Nodes in
V − S

Nodes
in S

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

δv: fraction of v’s edges
towards V − S in G

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
δv: fraction of v’s edges
towards V − S in G

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
• Unused randomness

(after node’s termination)

δv: fraction of v’s edges
towards V − S in G

15/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
• Unused randomness

(after node’s termination)

δv: fraction of v’s edges
towards V − S in G

16/22

Compressing Accepted Connections I

To represent accepted requests from S we need∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

≤ sd log ∆− 1− ε
2 sd log n

s
+ 2εds

where ε = 1
s

∑
v∈S εv

16/22

Compressing Accepted Connections I

To represent accepted requests from S we need∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

≤ sd log ∆− 1− ε
2 sd log n

s
+ 2εds

where ε = 1
s

∑
v∈S εv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

≥ d
∑
v∈S(1− εv) log 1

1−δv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

With simple calculations

16/22

Compressing Accepted Connections I

To represent accepted requests from S we need∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

≤ sd log ∆− 1− ε
2 sd log n

s
+ 2εds

where ε = 1
s

∑
v∈S εv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

≥ d
∑
v∈S(1− εv) log 1

1−δv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

With simple calculations

Two cases: s < α∆ and α∆ ≤ s ≤ n
2 ...

17/22

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

17/22

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

Rewrite −(1− ε)sd
∑
v∈S

1−εv

(1−ε)s log 1
1−δv

use Jensen’s inequality to get (1− ε)sd log 1−ε
1−δ

Case α∆ ≤ s ≤ n
2

17/22

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

Rewrite −(1− ε)sd
∑
v∈S

1−εv

(1−ε)s log 1
1−δv

use Jensen’s inequality to get (1− ε)sd log 1−ε
1−δ

Case α∆ ≤ s ≤ n
2

To bound 1− δ we use the Expander Mixing Lemma:
(1− δ) ≤ s

n + λ

17/22

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

Rewrite −(1− ε)sd
∑
v∈S

1−εv

(1−ε)s log 1
1−δv

use Jensen’s inequality to get (1− ε)sd log 1−ε
1−δ

Case α∆ ≤ s ≤ n
2

To bound 1− δ we use the Expander Mixing Lemma:
(1− δ) ≤ s

n + λ

together with hypothesis on s and λ, it implies
(1− ε)sd log 1−ε

1−δ > (1− ε)sd log n
s − 2εds

18/22

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
• Unused randomness

(after node’s termination)

19/22

Compressing Rejected Requests (Idea)

Semi-saturated nodes sst: accepted connections until time
t− 1 + requests from V − S are > dc

2
Critical nodes ct: not semi-saturated at time t but accepted
+ rejected connections are > cd

With `v − d′ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which
we use the following notions:

19/22

Compressing Rejected Requests (Idea)

Semi-saturated nodes sst: accepted connections until time
t− 1 + requests from V − S are > dc

2
Critical nodes ct: not semi-saturated at time t but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes ≤ n
2n and critical nodes ≤ n

c .

With `v − d′ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which
we use the following notions:

19/22

Compressing Rejected Requests (Idea)

Semi-saturated nodes sst: accepted connections until time
t− 1 + requests from V − S are > dc

2
Critical nodes ct: not semi-saturated at time t but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes ≤ n
2n and critical nodes ≤ n

c .

We can then write

With `v − d′ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which
we use the following notions:

ss(v) log 2n
c +

∑T
1 rct(v) log ct

Where rss(v) is the number of rejected connections from v
to semisaturated nodes and rct(v) is the number of rejected
connections from v to critical nodes at time t

20/22

Compression Summary

21/22

Open Problems

• Generalizing to non-dense expanders.
E.g., not clear if all nodes can achieve d connections if
∆ = o(n) (if ∆ = O(logn), this happens w.h.p.).

• Extending analysis to non-regular graphs.

• Investigate robustness of RAES when
nodes join or leave the network.

22/22

Thank You!

	Computing through Dynamics: Principles for Distributed Coordination
	Outline
	Graph Expansion I
	Graph Expansion II
	Expander Mixing Lemma
	Motivations for this Work I
	Bonus Motivation II
	Our Algorithm: RAES
	Our Result
	Encoding Arguments
	Encoding Argument Example
	Encoding Arg. for Running Time (Warm Up)
	Encoding for Always-Rejected v
	Encoding Argument for Expansion
	Compressing the Non-Expanding Set
	Compressing Accepted Connections I
	Compressing Accepted Connections II
	Compressing the Non-Expanding Set
	Compressing Rejected Requests (Idea)
	Compression Summary
	Open Problems

