Finding a Bounded-Degree **Expander** Inside a Dense One

Joint work with L. Becchetti, A. Clementi, F. Pasquale and L. Trevisan

Outline

- Definitions: Graph Expansion
- Motivation for this work
- Our Results
- Crash Course on Encoding Arguments

• Some Proof Ideas

What is a good measure of connectedness for a set of nodes S?

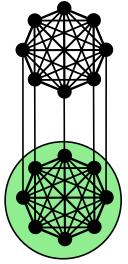
What is a good measure of *connectedness* for a set of nodes S?

• Attempt 1. Number of edges going out of S: $e(S, V - S) = |\{(u, v) | u \in S, v \in V - S\}|$

What is a good measure of connectedness for a set of nodes S?

• Attempt 1. Number of edges going out of S: $e(S, V - S) = |\{(u, v) | u \in S, v \in V - S\}|$

Problem: big sets are better than small ones

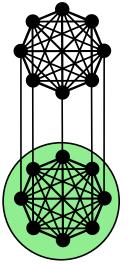


What is a good measure of *connectedness* for a set of nodes S?

• Attempt 1. Number of edges going out of S: $e(S, V - S) = |\{(u, v) | u \in S, v \in V - S\}|$

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its degrees $vol(S) = \sum_{u \in S} d_u$: $\frac{e(S, V-S)}{vol(S)}$



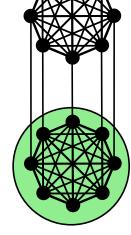
What is a good measure of *connectedness* for a set of nodes S?

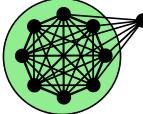
• Attempt 1. Number of edges going out of S: $e(S, V - S) = |\{(u, v) | u \in S, v \in V - S\}|$

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its degrees $vol(S) = \sum_{u \in S} d_u$: $\frac{e(S, V-S)}{vol(S)}$

Problem: Very big sets have big vol(S)





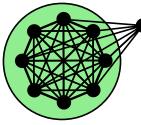
What is a good measure of *connectedness* for a set of nodes S?

• Attempt 1. Number of edges going out of S: $e(S, V - S) = |\{(u, v) | u \in S, v \in V - S\}|$

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its degrees $vol(S) = \sum_{u \in S} d_u$: $\frac{e(S, V-S)}{vol(S)}$

Problem: Very big sets have big vol(S)



• Attempt 3. We consider the "worst" between S and V - S: $\frac{e(S, V-S)}{\min\{vol(S), vol(V-S)\}}$

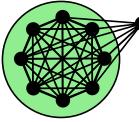
What is a good measure of *connectedness* for a set of nodes S?

• Attempt 1. Number of edges going out of S: $e(S, V - S) = |\{(u, v) | u \in S, v \in V - S\}|$

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its degrees $vol(S) = \sum_{u \in S} d_u$: $\frac{e(S, V-S)}{vol(S)}$

Problem: Very big sets have big vol(S)



• Attempt 3. We consider the "worst" between S and V - S: $\frac{e(S, V-S)}{\min\{vol(S), vol(V-S)\}}$ ----conductance

Examples: Giakkoupis et al. JACM'18 and Giakkoupis SODA'14 for another expansion measure.

In regular graphs $\frac{e(S,V-S)}{\min\{vol(S),vol(V-S)\}}$ is equivalent to $\phi(S) = \frac{e(S,V-S)}{vol(S)}$ assuming $S \leq \frac{n}{2}$

In regular graphs $\frac{e(S,V-S)}{\min\{vol(S),vol(V-S)\}}$ is equivalent to $\phi(S) = \frac{e(S,V-S)}{vol(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S) = \Pr(\text{random walk on random node of } S \text{ exits it})$

In regular graphs $\frac{e(S,V-S)}{\min\{vol(S),vol(V-S)\}}$ is equivalent to $\phi(S) = \frac{e(S,V-S)}{vol(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S) = \Pr(\text{random walk on random node of } S \text{ exits it})$

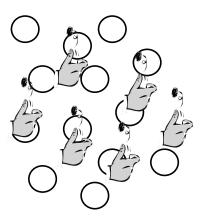
Graph G is ϵ -expander if $\min_S \phi(S) \ge \epsilon$

In regular graphs $\frac{e(S,V-S)}{\min\{vol(S),vol(V-S)\}}$ is equivalent to $\phi(S) = \frac{e(S,V-S)}{vol(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S) = \Pr(\text{random walk on random node of } S \text{ exits it})$

Graph G is ϵ -expander if $\min_S \phi(S) \ge \epsilon$

Example: In an Erős-Rényi graph $G_{n,p}$, include each edge with prob p.



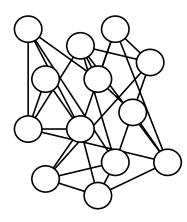
In regular graphs $\frac{e(S,V-S)}{\min\{vol(S),vol(V-S)\}}$ is equivalent to $\phi(S) = \frac{e(S,V-S)}{vol(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S) = \Pr(\text{random walk on random node of } S \text{ exits it})$

Graph G is ϵ -expander if $\min_S \phi(S) \ge \epsilon$

Example:

In an Erős-Rényi graph $G_{n,p}$, include each edge with prob p. For any $p \gg \frac{\log n}{n}$, they are good expanders with high probability.



Expanders can be studied using **linear algebra** (Spectral Graph Theory)

Expanders can be studied using **linear algebra** (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ -regular graph with 2nd-largest eigenvalue of adjecency matrix λ : $e(S,S) \leq |S|(\frac{|S|}{2}\frac{\Delta}{n} + \frac{\lambda}{2})$

Expanders can be studied using **linear algebra** (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ -regular graph with 2nd-largest eigenvalue of adjecency matrix λ : $e(S,S) \leq |S|(\frac{|S|}{2}\frac{\Delta}{n} + \frac{\lambda}{2})$

Proof. A adjacency matrix, 1_S indicator vector of S, J all-1 matrix. We observe

 $2e(S,S) = 1_S^T A 1_S$ and $1_S^T (\frac{\Delta}{n}J) 1_S = \frac{\Delta}{n} |S|$

Expanders can be studied using **linear algebra** (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ -regular graph with 2nd-largest eigenvalue of adjecency matrix λ : $e(S,S) \leq |S|(\frac{|S|}{2}\frac{\Delta}{n} + \frac{\lambda}{2})$

Proof. A adjacency matrix, 1_S indicator vector of S, J all-1 matrix. We observe

 $2e(S,S) = 1_S^T A 1_S$ and $1_S^T (\frac{\Delta}{n}J) 1_S = \frac{\Delta}{n} |S|$ Hence

$$2e(S,S) - \frac{\Delta}{n}|S| = \mathbf{1}_S^T (A - \frac{\Delta}{n}J)\mathbf{1}_S \le \lambda ||\mathbf{1}_S||^2 = \lambda |S|$$

 λ is the largest eigenvalue

Distributed construction of constant-degree expanders

 Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]: Every dense expander has a *constant-degree subgraph* which is also an expander.

Distributed construction of constant-degree expanders

 Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]: Every dense expander has a *constant-degree subgraph* which is also an expander.

But the proof is non-constructive.

Distributed construction of constant-degree expanders

 Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]: Every dense expander has a *constant-degree subgraph* which is also an expander.

But the proof is non-constructive.

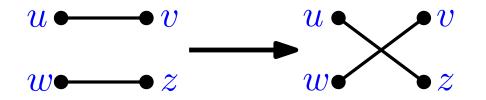
- Several works propose complicated distributed construction of expanders:
 - Law and Siu [INFOCOM'03]: incremental construction using Hamiltonian cycles

Distributed construction of constant-degree expanders

 Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]: Every dense expander has a *constant-degree subgraph* which is also an expander.

But the proof is non-constructive.

- Several works propose complicated distributed construction of expanders:
 - Law and Siu [INFOCOM'03]: incremental construction using Hamiltonian cycles
 - Allen-Zhu et al. [SODA'16]: start with a $\Omega(\log n)$ -regular graph and increase its expansion

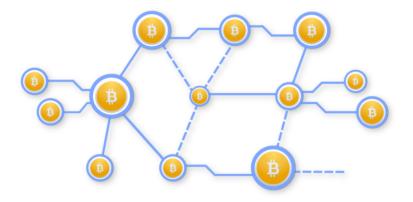


Bonus Motivation II

• Parallel algorithms for *sparsifying* a graph don't achieve sublogarithmic degree and assume weighted edges

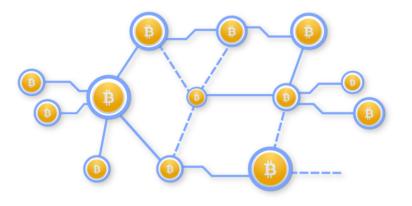
Bonus Motivation II

- Parallel algorithms for *sparsifying* a graph don't achieve sublogarithmic degree and assume weighted edges
- Model the way nodes create bounded-degree overlay networks in real distributed protocols, such as in peer-to-peer protocols (BitTorrent) or in distributed ledger protocols (Bitcoin)



Bonus Motivation II

- Parallel algorithms for *sparsifying* a graph don't achieve sublogarithmic degree and assume weighted edges
- Model the way nodes create bounded-degree overlay networks in real distributed protocols, such as in peer-to-peer protocols (BitTorrent) or in distributed ledger protocols (Bitcoin)

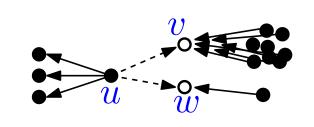


• A distributed construction of a constant-degree graph implies a *constant-load balancing* algorithm. Previous works obtain almost-tight load balancing in polynomial time (Berenbrink et al., SPAA'14)

Our Algorithm: RAES

Algorithm 1 RAES(G, d, c)1: H := empty directed graph over the node set V2: while H has nodes of outdegree < d do PHASE 1: $\triangleright d_v^{out}$: current outdegree of v in H 3: for each node $v \in V$ do 4: $v \in V$ picks $d - d_v^{out}$ neighbors in G uniformly at random 5: v submits a connection request to each of them 6: end for 7: $\triangleright d_v^{\text{in}}$: current indegree of v in H PHASE 2: 8: for each node $v \in V$ do 9: if v received $\leq cd - d_v^{in}$ connection requests in the previous phase then 10:v accepts all of them and the corresponding directed edges are added to ${\cal H}$ 11: else 12: \boldsymbol{v} rejects all connection requests received in Phase 1 13:end if 14:end for 15:16: end while 17: Replace each directed edge by an undirected one 18: return H

Example with d = 5



- u is missing 2 connections.
- u asks to connect to w and v.
- v has already cd incoming connections and refuses u's requests.

Our Result

Theorem.

For every $d \gg 1$, $0 < \alpha \leq 1$, $c \gg \frac{1}{\alpha^2}$, and αn -regular graph G, w.h.p. RAES(G, d, c) runs in $\mathcal{O}(\log n)$ parallel rounds with message complexity is $\mathcal{O}(n)$. Moreover, if G's 2nd-largest eigenvalue λ of normalized adjacency matrix is $\leq \epsilon \alpha^2$, then w.h.p. RAES(G, d, c) creates a ϵ -expander with degrees between d and d(c + 1).

Our Result

Theorem.

For every $d \gg 1$, $0 < \alpha \leq 1$, $c \gg \frac{1}{\alpha^2}$, and αn -regular graph G, w.h.p. RAES(G, d, c) runs in $\mathcal{O}(\log n)$ parallel rounds with message complexity is $\mathcal{O}(n)$. Moreover, if G's 2nd-largest eigenvalue λ of normalized adjacency matrix is $\leq \epsilon \alpha^2$, then w.h.p. RAES(G, d, c) creates a ϵ -expander with degrees between d and d(c+1).

Proof Technique: *Encoding Argument* (omitted: message complexity using martingale theory)

Encoding Arguments

Encoding Lemma.

If X finite set and $C: X \to \{0, 1\}^*$ a (partial & prefix-free) encoding of X then

 $\Pr_{x \sim Unif(X)}(|C(x)| \le \log|X| - s) \le 2^{-s}$

Encoding Arguments

Encoding Lemma.

If X finite set and $C: X \to \{0, 1\}^*$ a (partial & prefix-free) encoding of X then

$$\Pr_{x \sim Unif(X)}(|C(x)| \le \log |X| - s) \le 2^{-s}$$

Proof.
$$\frac{2^{\log|X|-s}}{|X|} \le 2^{-s}$$
.

Encoding Arguments

Encoding Lemma.

If X finite set and $C: X \to \{0, 1\}^*$ a (partial & prefix-free) encoding of X then

 $\Pr_{x \sim Unif(X)}(|C(x)| \le \log|X| - s) \le 2^{-s}$

Proof. $\frac{2^{\log|X|-s}}{|X|} \le 2^{-s}$.

Suggested reading: P. Morin et al. *Encoding Arguments*, ACM Comp. Surveys '17.

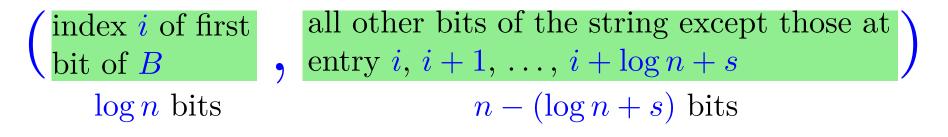
Encoding Argument Example

Flip a coin n times: $0110010 \cdots$. Probability of $\log n + s$ consecutive heads?

Encoding Argument Example

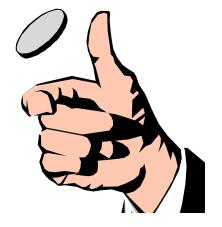
```
Flip a coin n times: 0110010 \cdots.
Probability of \log n + s consecutive heads?
```

Call *B* a *bad substring* of $\log n + s$ consecutive heads. Consider encoding C_B for strings containing *B*:



Encoding Argument Example

Flip a coin n times: $0110010 \cdots$. Probability of $\log n + s$ consecutive heads?



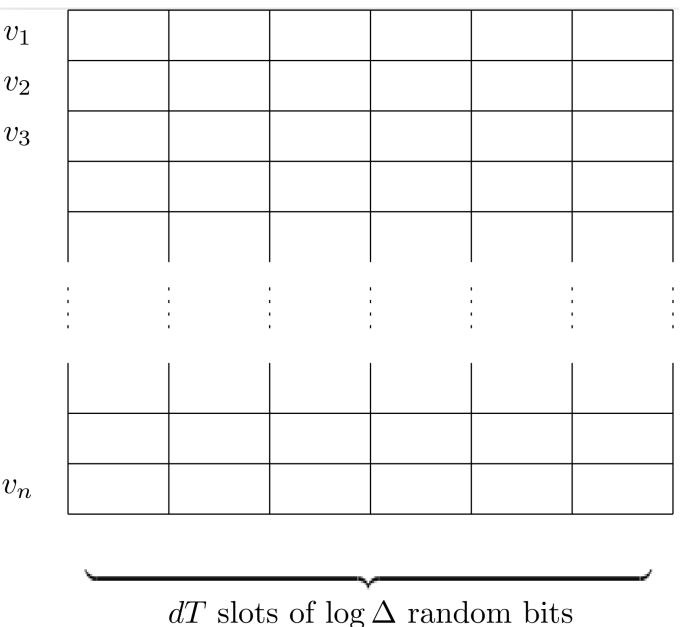
Call *B* a *bad substring* of $\log n + s$ consecutive heads. Consider encoding C_B for strings containing *B*:

By the Encoding Lemma $\Pr(|C_B(x)| \le \log |X| - s) = \Pr(|C_B(x)| \le n - s) \le 2^{-s}$

Encoding Arg. for Running Time (Warm Up)

Implementation: For each node v_i , array of dTentries of $\log \Delta$ bits

If RAES doesn't terminate in $O(\log n)$ rounds there exist node v with a rejected v_n request at each round



Encoding for Always-Rejected v

We encode with the following bits

• v's identity: $\log n$

- v's identity: $\log n$
- *v*'s request ℓ_v : $2 \log \ell_v$

- v's identity: $\log n$
- *v*'s request ℓ_v : $2 \log \ell_v$
- v's accepted requests: $2 \log d'$

- v's identity: $\log n$
- *v*'s request ℓ_v : $2\log \ell_v$
- v's accepted requests: $2 \log d'$
- position of v's accepted requests in ℓ_v : $\log \binom{\ell_v}{d'}$

- v's identity: $\log n$
- *v*'s request ℓ_v : $2\log \ell_v$
- v's accepted requests: $2 \log d'$
- position of v's accepted requests in ℓ_v : $\log \binom{\ell_v}{d'}$
- destinations of accepted requests: $d'\log\Delta$

- v's identity: $\log n$
- *v*'s request ℓ_v : $2\log \ell_v$
- v's accepted requests: $2 \log d'$
- position of v's accepted requests in ℓ_v : $\log \binom{\ell_v}{d'}$
- destinations of accepted requests: $d' \log \Delta$
- destinations of rejected requests: $(\ell_v d') \log \frac{n}{c}$

- v's identity: $\log n$
- *v*'s request ℓ_v : $2\log \ell_v$
- v's accepted requests: $2 \log d'$
- position of v's accepted requests in ℓ_v : $\log \binom{\ell_v}{d'}$
- destinations of accepted requests: $d' \log \Delta$
- destinations of rejected requests: $(\ell_v d') \log \frac{n}{c}$ **Observation:** at each round there are at most $\frac{n}{c}$ rejecting nodes

We encode with the following bits

- v's identity: $\log n$
- *v*'s request ℓ_v : $2\log \ell_v$
- v's accepted requests: $2 \log d'$
- position of v's accepted requests in ℓ_v : $\log \binom{\ell_v}{d'}$
- destinations of accepted requests: $d' \log \Delta$
- destinations of rejected requests: $(\ell_v d') \log \frac{n}{c}$

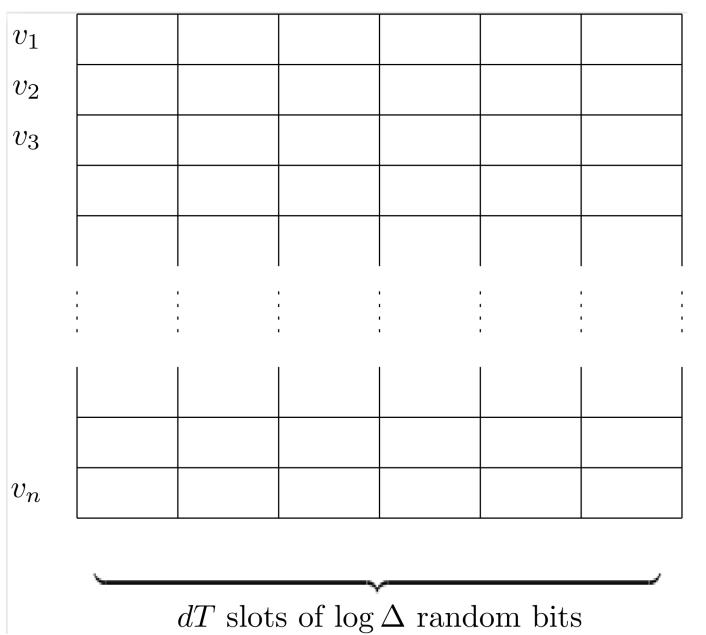
Observation: at each round there are at most $\frac{n}{c}$ rejecting nodes

After calculations we see that we save $\frac{1}{2}\ell_v \log(\alpha c) - \log n = \Omega(\log n)$

Encoding Argument for Expansion

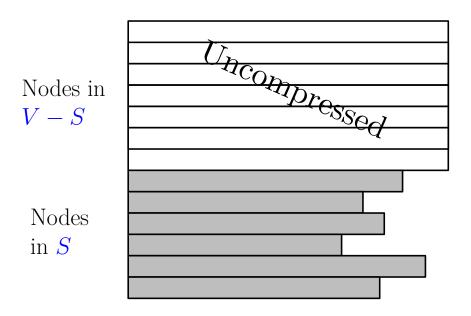
Implementation: For each node v_i , array of dTentries of $\log \Delta$ bits

We show that if the execution results in a non-expander, then it can be represented with $ndt \log \Delta \Omega(\log n)$ bits



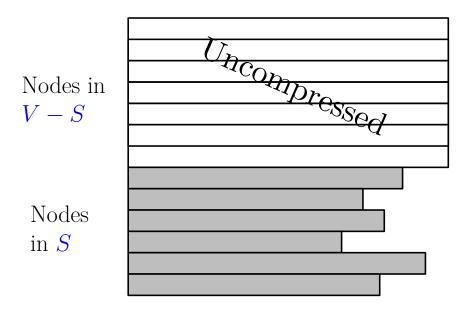
Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$



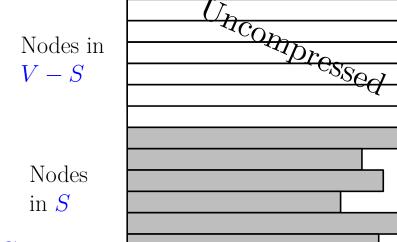
Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$



Encoding:

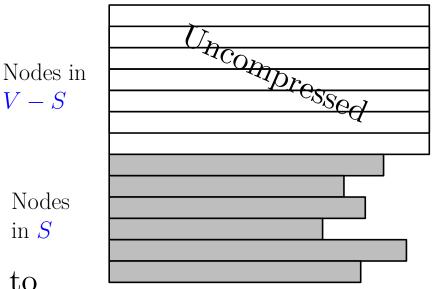
- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$
- Accepted connections from S to $V - S: \sum_{v \in S} 2\log(\epsilon_v d) + \log \binom{d}{\epsilon_v d}$



 ϵ_v : fraction of v's accepted connections towards V-S

Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$
- Accepted connections from S to $V - S: \sum_{v \in S} 2\log(\epsilon_v d) + \log \binom{d}{\epsilon_v d}$

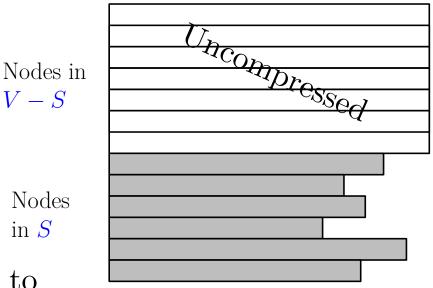


- $\epsilon_v :$ fraction of v 's accepted connections towards V-S
- Destinations of connections from S: $\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta$ connections to S
 connections to V - S (uncompressed)

 δ_v : fraction of v's edges towards V - S in G

Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$
- Accepted connections from S to $V - S: \sum_{v \in S} 2\log(\epsilon_v d) + \log \binom{d}{\epsilon_v d}$

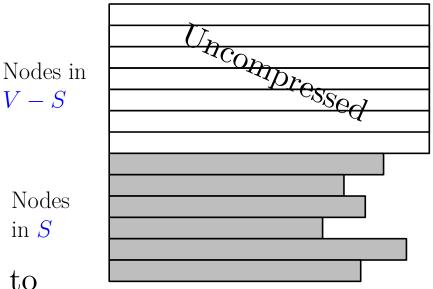


- $\epsilon_v :$ fraction of v 's accepted connections towards V-S
- Destinations of connections from S: $\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta$ connections to S
 connections to S
- Rejected requests

 δ_v : fraction of v's edges towards V - S in G

Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$
- Accepted connections from S to $V - S: \sum_{v \in S} 2\log(\epsilon_v d) + \log \binom{d}{\epsilon_v d}$

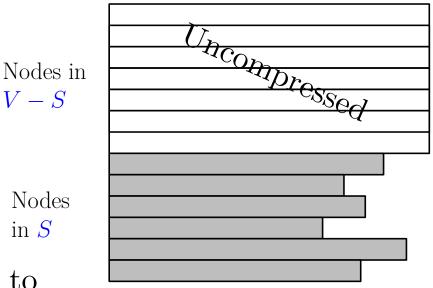


- ϵ_v : fraction of v 's accepted connections towards V-S
- Destinations of connections from S: $\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta$ connections to S
 connections to V - S (uncompressed)
- Rejected requests
- Unused randomness (after node's termination)

 δ_v : fraction of v's edges towards V - S in G

Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$
- Accepted connections from S to $V - S: \sum_{v \in S} 2\log(\epsilon_v d) + \log \binom{d}{\epsilon_v d}$



 ϵ_v : fraction of v's accepted connections towards V-S

- Destinations of connections from S: $\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta$ connections to S
 connections to V - S (uncompressed)
- Rejected requests
- Unused randomness (after node's termination)

 δ_v : fraction of v's edges towards V - S in G

To represent accepted requests from S we need

$$\begin{split} \sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta \\ &\leq s d \log \Delta - \frac{1 - \epsilon}{2} s d \log \frac{n}{s} + 2\epsilon ds \\ &\text{where } \epsilon = \frac{1}{s} \sum_{v \in S} \epsilon_v \end{split}$$

To represent accepted requests from S we need

$$\begin{split} \sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta \\ &\leq s d \log \Delta - \frac{1 - \epsilon}{2} s d \log \frac{n}{s} + 2\epsilon ds \\ &\text{where } \epsilon = \frac{1}{s} \sum_{v \in S} \epsilon_v \end{split}$$

With simple calculations $sd \log \Delta - (\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta)$ $\geq d \sum_{v \in S} (1 - \epsilon_v) \log \frac{1}{1 - \delta_v}$

To represent accepted requests from S we need

$$\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta$$
$$\leq s d \log \Delta - \frac{1 - \epsilon}{2} s d \log \frac{n}{s} + 2\epsilon d s$$
where $\epsilon = \frac{1}{s} \sum_{v \in S} \epsilon_v$

With simple calculations $sd \log \Delta - (\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta)$ $\geq d \sum_{v \in S} (1 - \epsilon_v) \log \frac{1}{1 - \delta_v}$

Two cases: $s < \alpha \Delta$ and $\alpha \Delta \leq s \leq \frac{n}{2}$...

Goal: bound $d \sum_{v \in S} (1 - \epsilon_v) \log \frac{1}{1 - \delta_v}$

Case $s < \alpha \Delta$

Use $\Delta(1-\delta_v) \leq s$ and $(\frac{\Delta}{s})^2 > \frac{\Delta}{s}\frac{1}{\alpha} = \frac{\Delta}{s}\frac{n}{\Delta} = \frac{n}{s}$ hence $d\sum_{v\in S}(1-\epsilon_v)\log\frac{1}{1-\delta_v} > \frac{1-\epsilon}{2}sd\log\frac{n}{s}$

Goal: bound $d \sum_{v \in S} (1 - \epsilon_v) \log \frac{1}{1 - \delta_v}$

Case $s < \alpha \Delta$

Use $\Delta(1-\delta_v) \leq s$ and $(\frac{\Delta}{s})^2 > \frac{\Delta}{s}\frac{1}{\alpha} = \frac{\Delta}{s}\frac{n}{\Delta} = \frac{n}{s}$ hence $d\sum_{v\in S}(1-\epsilon_v)\log\frac{1}{1-\delta_v} > \frac{1-\epsilon}{2}sd\log\frac{n}{s}$

Case $\alpha \Delta \leq s \leq \frac{n}{2}$ Rewrite $-(1-\epsilon)sd \sum_{v \in S} \frac{1-\epsilon_v}{(1-\epsilon)s} \log \frac{1}{1-\delta_v}$ use Jensen's inequality to get $(1-\epsilon)sd \log \frac{1-\epsilon}{1-\delta_v}$

Goal: bound $d \sum_{v \in S} (1 - \epsilon_v) \log \frac{1}{1 - \delta_v}$

Case $s < \alpha \Delta$

Use $\Delta(1-\delta_v) \leq s$ and $(\frac{\Delta}{s})^2 > \frac{\Delta}{s}\frac{1}{\alpha} = \frac{\Delta}{s}\frac{n}{\Delta} = \frac{n}{s}$ hence $d\sum_{v\in S}(1-\epsilon_v)\log\frac{1}{1-\delta_v} > \frac{1-\epsilon}{2}sd\log\frac{n}{s}$

Case $\alpha \Delta \leq s \leq \frac{n}{2}$ Rewrite $-(1 - \epsilon)sd \sum_{v \in S} \frac{1 - \epsilon_v}{(1 - \epsilon)s} \log \frac{1}{1 - \delta_v}$ use Jensen's inequality to get $(1 - \epsilon)sd \log \frac{1 - \epsilon}{1 - \delta}$ To bound $1 - \delta$ we use the Expander Mixing Lemma: $(1 - \delta) \leq \frac{s}{n} + \lambda$

Goal: bound $d \sum_{v \in S} (1 - \epsilon_v) \log \frac{1}{1 - \delta_v}$

Case $s < \alpha \Delta$

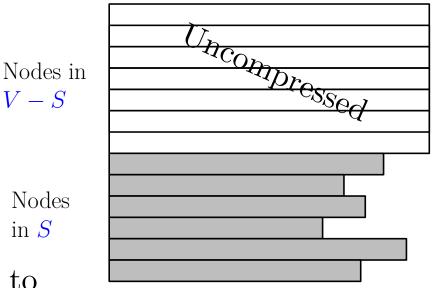
Use $\Delta(1-\delta_v) \leq s$ and $(\frac{\Delta}{s})^2 > \frac{\Delta}{s}\frac{1}{\alpha} = \frac{\Delta}{s}\frac{n}{\Delta} = \frac{n}{s}$ hence $d\sum_{v\in S}(1-\epsilon_v)\log\frac{1}{1-\delta_v} > \frac{1-\epsilon}{2}sd\log\frac{n}{s}$

Case $\alpha \Delta \leq s \leq \frac{n}{2}$ Rewrite $-(1 - \epsilon)sd \sum_{v \in S} \frac{1 - \epsilon_v}{(1 - \epsilon)s} \log \frac{1}{1 - \delta_v}$ use Jensen's inequality to get $(1 - \epsilon)sd \log \frac{1 - \epsilon}{1 - \delta}$ To bound $1 - \delta$ we use the **Expander Mixing Lemma**: $(1 - \delta) \leq \frac{s}{n} + \lambda$

together with hypothesis on s and λ , it implies $(1-\epsilon)sd\log\frac{1-\epsilon}{1-\delta} > (1-\epsilon)sd\log\frac{n}{s} - 2\epsilon ds$

Encoding:

- Randomness of V S
- Set S: $\log |S| + \log {n \choose s}$
- Accepted connections: $\sum_{v \in S} 2 \log \ell_v + \log \binom{\ell_v}{d}$
- Accepted connections from S to $V - S: \sum_{v \in S} 2\log(\epsilon_v d) + \log \binom{d}{\epsilon_v d}$



- ϵ_v : fraction of v's accepted connections towards V-S
- Destinations of connections from S: $\sum_{v \in S} (1 - \epsilon_v) d \log((1 - \delta_v) \Delta) + \sum_{v \in S} \epsilon_v d \log \Delta$ connections to S
 connections to V - S (uncompressed)
- Rejected requests
- Unused randomness (after node's termination)

Compressing Rejected Requests (Idea)

With $\ell_v - d'$ bits we encode which requests are rejected. The hard part is compressing their *destinations*, for which we use the following notions:

Semi-saturated nodes ss_t : accepted connections until time t-1 + requests from V-S are $> \frac{dc}{2}$ Critical nodes c_t : not semi-saturated at time t but accepted + rejected connections are > cd

Compressing Rejected Requests (Idea)

With $\ell_v - d'$ bits we encode which requests are rejected. The hard part is compressing their *destinations*, for which we use the following notions:

 $\begin{array}{l} Semi-saturated \ nodes \ ss_t: \ \text{accepted connections until time} \\ t-1 + \text{requests from} \ V-S \ \text{are} > \frac{dc}{2} \\ \hline Critical \ nodes \ c_t: \ \text{not semi-saturated} \ \text{at time} \ t \ \text{but accepted} \\ + \ \text{rejected connections} \ \text{are} > cd \end{array}$

Claim. semi-saturated nodes $\leq \frac{n}{2n}$ and critical nodes $\leq \frac{n}{c}$.

Compressing Rejected Requests (Idea)

With $\ell_v - d'$ bits we encode which requests are rejected. The hard part is compressing their *destinations*, for which we use the following notions:

 $\begin{array}{l} Semi-saturated \ nodes \ ss_t: \ \text{accepted connections until time} \\ t-1 + \text{requests from} \ V-S \ \text{are} > \frac{dc}{2} \\ \hline Critical \ nodes \ c_t: \ \text{not semi-saturated} \ \text{at time} \ t \ \text{but accepted} \\ + \ \text{rejected connections} \ \text{are} > cd \end{array}$

Claim. semi-saturated nodes $\leq \frac{n}{2n}$ and critical nodes $\leq \frac{n}{c}$.

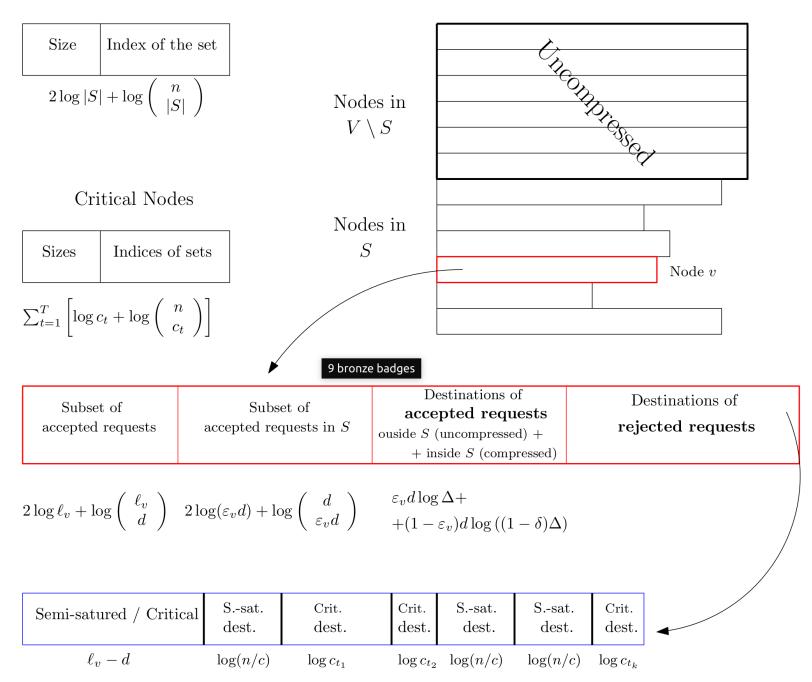
We can then write

$$ss(v)\log\frac{2n}{c} + \sum_{1}^{T}rc_t(v)\log c_t$$

Where rss(v) is the number of rejected connections from v to semisaturated nodes and $rc_t(v)$ is the number of rejected connections from v to critical nodes at time t

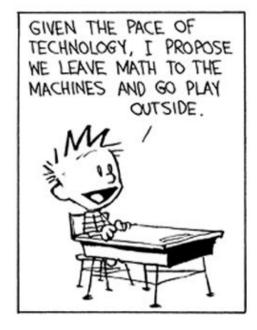
Compression Summary

Set S



Open Problems

- Generalizing to non-dense expanders. E.g., not clear if all nodes can achieve d connections if $\Delta = o(n)$ (if $\Delta = O(\log n)$, this happens w.h.p.).
- Extending analysis to non-regular graphs.
- Investigate robustness of RAES when nodes join or leave the network.



Thank You!