Finding a Bounded-Degree Expander

Inside a Dense One HAL-02002377

Emanuele Natale

Joint work with L. Becchetti, A. Clementi, F. Pasquale and L. Trevisan

COATI Group Seminar 26 March 2019

Outline

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Problem: Very big sets have big $\operatorname{vol}(S)$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Problem: Very big sets have big $\operatorname{vol}(S)$

- Attempt 3. We consider the "worst" between S and $V-S: \frac{e(S, V-S)}{\min \{v o l(S), v o l(V-S)\}}$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Problem: Very big sets have big $\operatorname{vol}(S)$

- Attempt 3. We consider the "worst" between S and $V-S: \frac{e(S, V-S)}{\min \{v o l(S), v o l(V-S)\}}$

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{v o l(S)}$ assuming $S \leq \frac{n}{2}$

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\operatorname{vol}(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\operatorname{vol}(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph G is ϵ-expander if $\min _{S} \phi(S) \geq \epsilon$

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\text { vol }(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph G is ϵ-expander if $\min _{S} \phi(S) \geq \epsilon$

Example:
In an Erős-Rényi graph $G_{n, p}$, include each edge with prob p.

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\text { vol }(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph G is ϵ-expander if $\min _{S} \phi(S) \geq \epsilon$

Example:
In an Erős-Rényi graph $G_{n, p}$, include each edge with prob p.
For any $p \gg \frac{\log n}{n}$, they are good expanders with high probability.

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Proof.
A adjacency matrix,
1_{S} indicator vector of S,
J all-1 matrix.

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Proof.

A adjacency matrix,
1_{S} indicator vector of S, J all-1 matrix.

$$
\begin{gathered}
1_{S}^{T} A 1_{S} \\
2 e(S, S)-\frac{\Delta}{n}|S|^{2}
\end{gathered} 1_{S}^{T}\left(\frac{\Delta}{n} J\right) 1_{S}
$$

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Proof.

A adjacency matrix, 1_{S} indicator vector of S, J all-1 matrix.

$$
\begin{aligned}
& 1_{S}^{T} A 1_{S} \quad 1_{S}^{T}\left(\frac{\Delta}{n} J\right) 1_{S} \\
& 2 e(S, S)-\frac{\Delta}{n}|S|^{2} \\
& =1_{S}^{T}\left(A-\frac{\Delta}{n} J\right) 1_{S} \\
& \leq \lambda\left\|1_{S}\right\|^{2} \stackrel{ }{=} \lambda|S|
\end{aligned}
$$

Motivations for this Work I

Distributed construction of constant-degree expanders

Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]:

Every dense expander has a constant-degree subgraph which is also an expander.

Motivations for this Work I

Distributed construction of constant-degree expanders

Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]:

Every dense expander has a constant-degree subgraph which is also an expander.

But the proof is non-constructive: How to find the low-degree sub-expander?

Motivations for this Work II

Several works propose complicated distributed construction of expanders:

- Law and Siu [INFOCOM'03]: incremental construction using Hamiltonian cycles

Motivations for this Work II

Several works propose complicated distributed construction of expanders:

- Law and Siu [INFOCOM'03]: incremental construction using Hamiltonian cycles
- Allen-Zhu et al. [SODA'16]: start with a $\Omega(\log n)$-regular graph and increase its expansion

Bonus Motivations

- Parallel algorithms for sparsifying a graph don't achieve sublogarithmic degree and assume weighted edges

Bonus Motivations

- Parallel algorithms for sparsifying a graph don't achieve sublogarithmic degree and assume weighted edges
- Model creation of overlay networks in protocols such as BitTorrent (P2P) or Bitcoin (distributed ledgers)

Bonus Motivations

- Parallel algorithms for sparsifying a graph don't achieve sublogarithmic degree and assume weighted edges
- Model creation of overlay networks in protocols such as BitTorrent (P2P) or Bitcoin (distributed ledgers)

- Distributed construction of constant-degree graph implies constant-load balancing algorithm.
Previous works: almost-tight load balancing in poly time (Berenbrink et al., SPAA'14)

Algorithm Request - Accept if Enough Space

Algorithm $\operatorname{RAES}(G, d, c)$ for each node v :

- Set $d_{\text {out }}=0$ and assume connections are directed
- At the start of each round,
if $\left(d_{\text {out }}<d\right)$ then
send $d-d_{\text {out }}$ requests to random neighbors
- At the end of each round if (current requests + new ones $\leq c d$) then accept all request else
reject all current requests
if $\left(d_{o} u t=d\right)$ then
forget edge orientation

Example with $d=5$

u is missing 2 connections.
u asks to connect to w and v.
v has already $c d$ incoming connections and refuses u 's requests.

Our Result

> Theorem.
> For every $d \gg 1,0<\alpha \leq 1, c \gg \frac{1}{\alpha^{2}}$, and αn-regular graph G, w.h.p.
> $\operatorname{RAES}(G, d, c)$ runs in $\mathcal{O}(\log n)$ parallel rounds with message complexity is $\mathcal{O}(n)$.
> Moreover, if G 's 2nd-largest eigenvalue λ of normalized adjacency matrix is $\leq \epsilon \alpha^{2}$, then w.h.p. $R A E S(G, d, c)$ creates a ϵ-expander with degrees between d and $d(c+1)$.

Our Result

> Theorem.
> For every $d \gg 1,0<\alpha \leq 1, c \gg \frac{1}{\alpha^{2}}$, and αn-regular graph G, w.h.p.
> $R A E S(G, d, c)$ runs in $\mathcal{O}(\log n)$ parallel rounds with message complexity is $\mathcal{O}(n)$.
> Moreover, if G 's 2nd-largest eigenvalue λ of normalized adjacency matrix is $\leq \epsilon \alpha^{2}$, then w.h.p. $R A E S(G, d, c)$ creates a ϵ-expander with degrees between d and $d(c+1)$.

Proof Technique: Encoding Argument
(omitted: message complexity using martingale theory)

Encoding Arguments

Encoding Lemma.
If X finite set and
$C: X \rightarrow\{0,1\}^{*}$ a (partial \& prefix-free) encoding of X then

$$
\operatorname{Pr}_{x \sim U n i f(X)}(|C(x)| \leq \log |X|-s) \leq 2^{-s}
$$

Encoding Arguments

Encoding Lemma.
If X finite set and
$C: X \rightarrow\{0,1\}^{*}$ a (partial \& prefix-free) encoding of X then

$$
\operatorname{Pr}_{x \sim U n i f(X)}(|C(x)| \leq \log |X|-s) \leq 2^{-s}
$$

Proof. $\frac{2^{\log |X|-s}}{|X|} \leq 2^{-s}$.

Encoding Arguments

Encoding Lemma.

If X finite set and
$C: X \rightarrow\{0,1\}^{*}$ a (partial \& prefix-free) encoding of X then

$$
\operatorname{Pr}_{x \sim U n i f(X)}(|C(x)| \leq \log |X|-s) \leq 2^{-s}
$$

Proof. $\frac{2^{\log |X|-s}}{|X|} \leq 2^{-s}$.
Suggested reading: P. Morin et al. Encoding Arguments, ACM Comp. Surveys '17.

Encoding Argument Example

Flip a coin n times: $0110010 \cdots$.
Probability of $\log n+s$ consecutive heads?

Encoding Argument Example

Flip a coin n times: $0110010 \cdots$.
Probability of $\log n+s$ consecutive heads?

Call B a bad substring of $\log n+s$ consecutive heads.
Consider encoding C_{B} for strings containing B :
$\left(\begin{array}{l}\text { index } i \text { of first } \\ \text { bit of } B\end{array}\right.$
$\log n$ bits
all other bits of the string except those at , entry $i, i+1, \ldots, i+\log n+s$
$n-(\log n+s)$ bits

Encoding Argument Example

Flip a coin n times: $0110010 \cdots$. Probability of $\log n+s$ consecutive heads?

Call B a bad substring of $\log n+s$ consecutive heads.
Consider encoding C_{B} for strings containing B :
$\left(\begin{array}{l}\text { index } i \text { of first } \\ \text { bit of } B\end{array}\right.$
$\log n$ bits
all other bits of the string except those at , entry $i, i+1, \ldots, i+\log n+s$

$$
n-(\log n+s) \text { bits }
$$

By the Encoding Lemma
$\operatorname{Pr}\left(\left|C_{B}(x)\right| \leq \log |X|-s\right)=\operatorname{Pr}\left(\left|C_{B}(x)\right| \leq n-s\right) \leq 2^{-s}$

Encoding Arg. for Running Time (Warm Up)

Implementation: ${ }^{v_{1}}$
For each node $\quad v_{2}$ v_{i}, array of $d T \quad v_{3}$ entries of $\log \Delta$ bits

If RAES doesn't terminate in
$O(\log n)$ rounds there exist node v with a rejected v_{n} request at each round

$d T$ slots of $\log \Delta$ random bits

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$

Encoding for Always-Rejected v

We encode with the following bits

- v's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d^{\prime}$

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d^{\prime}$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d^{\prime}}$

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d^{\prime}$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d^{\prime}}$
- destinations of accepted requests: $d^{\prime} \log \Delta$

Encoding for Always-Rejected v

We encode with the following bits

- v's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d^{\prime}$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d^{\prime}}$
- destinations of accepted requests: $d^{\prime} \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d^{\prime}\right) \log \frac{n}{c}$

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d^{\prime}$
- position of v^{\prime} s accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d^{\prime}}$
- destinations of accepted requests: $d^{\prime} \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d^{\prime}\right) \log \frac{n}{c}$
Observation: at each round there are at most $\frac{n}{c}$ rejecting nodes

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$
- v 's request $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d^{\prime}$
- position of v^{\prime} s accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d^{\prime}}$
- destinations of accepted requests: $d^{\prime} \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d^{\prime}\right) \log \frac{n}{c}$
Observation: at each round there are at most $\frac{n}{c}$ rejecting nodes

After calculations we see that we save $\frac{1}{2} \ell_{v} \log (\alpha c)-\log n=\Omega(\log n)$

Encoding Argument for Expansion

Implementation: v_{1}
For each node v_{2} v_{i}, array of $d T \quad v_{3}$ entries of $\log \Delta$ bits

We show that if the execution results in a non-expander, then it can be represented with

$d T$ slots of $\log \Delta$ random bits

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:
$\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to

$$
V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}
$$

ϵ_{v} : fraction of v 's accepted connections towards $V-S$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to

$$
V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}
$$

ϵ_{v} : fraction of v 's accepted connections towards $V-S$

- Destinations of connections from S :

$$
\begin{aligned}
& \sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
& \text { connections to } S
\end{aligned}
$$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to $V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to $V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :
$\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta$ connections to S
- Rejected requests
- Unused randomness (after node's termination)

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to $V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :
$\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta$
connections to S
connections to $V-S$ (uncompressed)
- Rejected requests
- Unused randomness (after node's termination)
δ_{v} : fraction of v 's edges towards $V-S$ in G

Compressing Accepted Connections I

To represent accepted requests from S we need

$$
\begin{gathered}
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
\leq s d \log \Delta-\frac{1-\epsilon}{2} s d \log \frac{n}{s}+2 \epsilon d s
\end{gathered}
$$

where $\epsilon=\frac{1}{s} \sum_{v \in S} \epsilon_{v}$

Compressing Accepted Connections I

To represent accepted requests from S we need

$$
\begin{gathered}
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
\leq s d \log \Delta-\frac{1-\epsilon}{2} s d \log \frac{n}{s}+2 \epsilon d s
\end{gathered}
$$

where $\epsilon=\frac{1}{s} \sum_{v \in S} \epsilon_{v}$
With simple calculations
$s d \log \Delta-\left(\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta\right)$
$\geq d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$

Compressing Accepted Connections I

To represent accepted requests from S we need

$$
\begin{gathered}
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
\leq s d \log \Delta-\frac{1-\epsilon}{2} s d \log \frac{n}{s}+2 \epsilon d s
\end{gathered}
$$

where $\epsilon=\frac{1}{s} \sum_{v \in S} \epsilon_{v}$
With simple calculations
$s d \log \Delta-\left(\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta\right)$ $\geq d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$

Two cases: $s<\alpha \Delta$ and $\alpha \Delta \leq s \leq \frac{n}{2} \ldots$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$
Case $\alpha \Delta \leq s \leq \frac{n}{2}$
Rewrite $-(1-\epsilon) s d \sum_{v \in S} \frac{1-\epsilon_{v}}{(1-\epsilon) s} \log \frac{1}{1-\delta_{v}}$
use Jensen's inequality to get $(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$
Case $\alpha \Delta \leq s \leq \frac{n}{2}$
Rewrite $-(1-\epsilon) s d \sum_{v \in S} \frac{1-\epsilon_{v}}{(1-\epsilon) s} \log \frac{1}{1-\delta_{v}}$
use Jensen's inequality to get $(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}$
To bound $1-\delta$ we use the Expander Mixing Lemma:

$$
(1-\delta) \leq \frac{s}{n}+\lambda
$$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$
Case $\alpha \Delta \leq s \leq \frac{n}{2}$
Rewrite $-(1-\epsilon) s d \sum_{v \in S} \frac{1-\epsilon_{v}}{(1-\epsilon) s} \log \frac{1}{1-\delta_{v}}$
use Jensen's inequality to get $(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}$
To bound $1-\delta$ we use the Expander Mixing Lemma:

$$
(1-\delta) \leq \frac{s}{n}+\lambda
$$

together with hypothesis on s and λ, it implies

$$
(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}>(1-\epsilon) s d \log \frac{n}{s}-2 \epsilon d s
$$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to
$V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :

$$
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta
$$

- Rejected requests
- Unused randomness
(after node's termination)

Compressing Rejected Requests (Idea)

With $\ell_{v}-d^{\prime}$ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which we use the following notions:

Semi-saturated nodes $s s_{t}$: accepted connections until time $t-1+$ requests from $V-S$ are $>\frac{d c}{2}$
Critical nodes c_{t} : not semi-saturated at time t but accepted + rejected connections are $>c d$

Compressing Rejected Requests (Idea)

With $\ell_{v}-d^{\prime}$ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which we use the following notions:

Semi-saturated nodes $s s_{t}$: accepted connections until time $t-1+$ requests from $V-S$ are $>\frac{d c}{2}$
Critical nodes c_{t} : not semi-saturated at time t but accepted + rejected connections are $>c d$

Claim. semi-saturated nodes $\leq \frac{n}{2 n}$ and critical nodes $\leq \frac{n}{c}$.

Compressing Rejected Requests (Idea)

With $\ell_{v}-d^{\prime}$ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which we use the following notions:

Semi-saturated nodes $s s_{t}$: accepted connections until time $t-1+$ requests from $V-S$ are $>\frac{d c}{2}$
Critical nodes c_{t} : not semi-saturated at time t but accepted + rejected connections are $>c d$

Claim. semi-saturated nodes $\leq \frac{n}{2 n}$ and critical nodes $\leq \frac{n}{c}$.
We can then write

$$
s s(v) \log \frac{2 n}{c}+\sum_{1}^{T} r c_{t}(v) \log c_{t}
$$

Where $\operatorname{rss}(v)$ is the number of rejected connections from v to semisaturated nodes and $r c_{t}(v)$ is the number of rejected connections from v to critical nodes at time t

Compression Summary

Set S

Size	Index of the set
$2 \log \|S\|+\log \binom{n}{\|S\|}$	

Nodes in $V \backslash S$

9 bronze badges

Subset of	Subset of	Destinations of	Destinations of
accepted requests	accepted requests in S	accepted requests ouside S (uncompressed) + + inside S (compressed)	rejected requests

$2 \log \ell_{v}+\log \binom{\ell_{v}}{d} \quad 2 \log \left(\varepsilon_{v} d\right)+\log \binom{d}{\varepsilon_{v} d} \quad \begin{aligned} & \varepsilon_{v} d \log \Delta+ \\ & +\left(1-\varepsilon_{v}\right) d \log ((1-\delta) \Delta)\end{aligned}$

Semi-satured / Critical	S.-sat. dest.	Crit. dest.	Crit. dest.	S.-sat. dest.	S.-sat. dest.	Crit. dest.
$\ell_{v}-d$	$\log (n / c)$	$\log c_{t_{1}}$	$\log c_{t_{2}}$	$\log (n / c)$	$\log (n / c) \log c_{t_{k}}$	

Open Problems

- Generalizing to non-dense expanders. E.g., not clear if all nodes can achieve d connections if $\Delta=o(n)$ (if $\Delta=O(\log n)$, this happens w.h.p.)

Open Problems

- Generalizing to non-dense expanders. E.g., not clear if all nodes can achieve d connections if $\Delta=o(n)$ (if $\Delta=O(\log n)$, this happens w.h.p.)
- Extending analysis to non-regular graphs.

Open Problems

- Generalizing to non-dense expanders. E.g., not clear if all nodes can achieve d connections if $\Delta=o(n)$ (if $\Delta=O(\log n)$, this happens w.h.p.)
- Extending analysis to non-regular graphs.
- Investigate robustness of RAES when nodes join or leave the network.

Thank You!

