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k-Plurality Consensus

This way! This way!

THIS WAY!

Each agent supports one out of k opinions
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Population Protocols

• (Directed) graph G,
• set of nodes’ states

Σ = (σu)u∈V ,
• edges activated by a scheduler,
• function γ : Σ× Σ→ Σ× Σ s.t.

if edge (u, v) with states
(σu, σv) activated, new states
are

σu σv
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σ′u σ′v

vu

=⇒edge
(u, v)

activated

γ(σu, σv) = (σ′u, σ′v)
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Population Protocols: Schedulers

Probabilistic scheduler:
activate an edge chosen
at random

What if a protocol P should never fail?

Fair scheduler: if S appears infinitely often, also
any conf. reachable from S appears infinitely often:

A configuration is the state of all nodes S = (σ1, ..., σn).
S′ reachable from S if it is possible to activate
edges such that S becomes S′.

S′ reachable from S and S1, S2, ..., S, ..., S, ..., S, ...
=⇒ S1, S2, ..., S

′, ..., S′, ..., S′, ...
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Self-Stabilization

S := {“correct states of the system” }.
Convergence. Starting from any
possible configuration, the system
eventually reaches a configuration in S.
Closure. If configuration in S, it
remains in S.

A protocol is
self-stabilizing iff
guarantees
convergence and
closure w.r.t. S.

:= configuration

S

n agents with states in Σ. Σn possible configurations.
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Majority (2-Plurality) Consensus: 2-bit Protocol
State: (green/red, defended or not)

(r, 1) (g, 1) (r, 0) (g, 0)

=⇒

(r, 1) (g, 0) (r, 0) (r, 1)

=⇒

[Mertzios et al. ICALP’16,
Benezit et al. ICASSP’09 ]
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Majority Consensus: 2-bit Lower Bound

Three possible states: 1, 0, α.

[Mertzios et al. ICALP’16 ]
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Three possible states: 1, 0, α.
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G

G′

x− 1
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x− 2
“0”

x+ 1
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T

G′′
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Majority Consensus: 2-bit Lower Bound

Three possible states: 1, 0, α.
Observe: α counts either as “output 1” or “output 0”.
Wlog assume α counts as “output 0”.

G

G′

x− 1
“0”x “1”

x− 2
“0”

x+ 1
“1”

=⇒
sequence
of edge

activations
T

G′′

2x− 1 “1”2 “0”

2 “0”

2 “0”

=⇒

Initial majority is “0”!

[Mertzios et al. ICALP’16 ]
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Salehkaleybar et al.’s Conjecture [TSIPN’15]

Conjecture. O(2k) states are necessary.

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
• Each node initially has a coin = its opinion
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Ω(k2) Lower Bound I

k colors, Σ states.
Protocol P eventually reaches plurality consensus.
There is output function
Φ : Σ→ (“i is plurality”)i∈{1,...,k}

=⇒ there is a color c∗ s.t. |{σ : Φ(σ) = c∗}| ≤ Σ/k

(x− 1)/2 pairs of nodes
with other opinionsx “c∗”

There are
≈ ( x−1

2k−4 )k−2 initial
config.s of the form

In at most ≈ ( 2e·x
|Σ|
k −1

)
|Σ|
k −1 config.s all nodes output c∗.

Pigeonhole: if |Σ| < k2 − k, 2 config.s G and G′ in
converge to identical configurations.
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Ω(k2) Lower Bound II

G

=
⇒

G′′

2x− 1 “c∗”=⇒

(x− 1)/2
pairs of
nodes with
other
opinions

x
“c∗”

G′ (x− 1)/2
pairs of
nodes with
other
opinions

x
“c∗”



15/22

Ω(k2) Lower Bound II

G

=
⇒

G′′

2x− 1 “c∗”

y “c′”

y “c′”

=⇒

(x− 1)/2
pairs of
nodes with
other
opinions

x
“c∗”

G′

y “c′”

(x− 1)/2
pairs of
nodes with
other
opinions

x
“c∗”

• adding y “c′” to G makes
c′ plurality in G

• adding y “c′ to G′ leaves
c∗ plurality in G′.

Wlog there is opinion c′ and y s.t.
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Plurality Consensus via Tournament Tree
Idea. Compute plurality by majority tournament.

c1 c2 c3 c4

w2 = c3 vs c4w1 = c1 vs c2

w1 vs w2

Requires agreement on the leaves/labels.
Problem. Not
clear who should
play at each match:
winner of previous
matches can change.

c1 c2 c3 c4

c3c1

c1 vs c3

c1 c2 c3 c4

c4c1

c1 vs c3

=⇒

c1 may already have been competing
against c4: it cannot simply start afresh

Solved if nodes
can change opinion.
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Dynamic Plurality Consensus

States and weights Updating the state

[Gasieniec et al. OPODIS’16]

Transitions

Nodes can change opinion during execution.
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Dynamic Plurality Consensus
[Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

(r, 1) (g, 1) (r, 0) (g, 0)

=⇒

(r, 1) (g, 0) (r, 0) (r, 1)

=⇒

(r, 2) (g, 2) (r, 0) (g, 0)

=⇒

(r, 2) (g, 1) (r, 0) (r, 1)

=⇒

Nodes changing opinion
generate two soldiers of
the new opinion. (r, 1)

=⇒
(g, 1)

=⇒
(g, 1)

(r, 2)

=⇒
(g, 2)

=⇒

(r, 0)

(g, 0)

Balance of opinions
equals

balance of soldiers
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O(k11) Upper Bound (Refunting Conjecture)

To refute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run in
parallel with Gasieniec et al.’s.
Idea. Have agents arrange opinions in a linked list.

Problem. Multiple lists can
appears. How to delete/merge lists?

Ideas. Start deleting from roots of lists and append
elements by travelling from root to last item.

u will
inform
parent that
list shall be
deleted.

u starts by
designating v as
parent. Eventually u
designates as parents
v’s child, and so on.

u
u

v
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Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k11) states per agent.

(Ordered) plurality consensus in
population protocols with fair
scheduler can be solved using O(k6)
states per agent.

Ω(k2) states per agent are necessary.

What is the space complexity of
plurality consensus in population
protocols with fair scheduler?
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Thank You
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