On the Necessary Memory to Compute
the Plurality in Multi-Agent Systems

Emanuele Natale
™ -
[Hd e COATI % P B .

joint work with
[liad Ramezani (SUT, Iran)

[
CIAC

Rome, 29 May 2019

1/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

k-Plurality Consensus

Each agent supports one out of £ opinions

>
>

3/22

k-Plurality Consensus

All agents eventually support the same opinion
Ny
@ @
g9

ﬁ\% 7

zﬁ

3/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

5/22

Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

e (Directed) graph G,

e set of nodes’ states
Z::(O-u)uEV7

e edges activated by a scheduler,

e function v: 2 X X — X X X s.t.
if edge (u,v) with states
(0u,0,) activated, new states
are

/7(0-’&7 Jv) — (O-fiw O-;J)

N . N .
. P . P
N . N .
*e g *e g

.
—
~
edge
R . R u ’lj .
. N . N
P *e (u , U) P *e

activated

5/22

Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

e (Directed) graph G,

o set of nodes’ states o
2= (Uu)uEV7

e edges activated by a scheduler,

e function v: 2 X X — X X X s.t.
if edge (u,v) with states
(0u,0,) activated, new states
are

protocol’s
memory

/7(0-’&7 J’U) — (O-fiu O',Z)

N . N .
. P . P
N . N .
*e g *e g

.
—
~
edge
R . R u ’lj .
. N . N
P *e (u , U) P *e

activated

5/22

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

6/22

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

6/22

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

A configuration is the state of all nodes S = (o1, ...,0,).

S" reachable from S if it is possible to activate
edges such that S becomes 5’.

6/22

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

A configuration is the state of all nodes S = (o1, ...,0,).

S" reachable from S if it is possible to activate
edges such that S becomes 5’.

Fair scheduler: it S appears infinitely often, also
any cont. reachable from S appears infinitely often:

S’ reachable from S and Si,55,...,5,...,59,...,.5, ...
— 51,5,,...,5,....8",....5, ..

6/22

Self-Stabilization

n agents with states in >. >" possible configurations.

S := {“correct states of the system” }.

Convergence. Starting from any
possible configuration, the system

eventually reaches a configuration in S.
Closure. If configuration in S, it

remains in S.

A protocol is e

self-stabilizing ift
guarantees
convergence and
closure w.r.t. S.

e := configuration

7/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Majority (2-Plurality) Consensus: 2-bit Protocol
[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |

u\ v (9,0) (9,1) (r, 0) (?“
) - ((9,1), (9,0)) — ((r,
) | ((g,0),(g,1)) - ((9,0),(g,1)) | ((g,
; B ((931)?(970)) T ((

RENEN
R =

(9,
(g,
(7,
(7,

-%

9/22

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

10/22

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

10/22

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

G '
x “1” -~ o4
sequence 9y 1«17
of edge
el activations
r+1 T
66177

10/22

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

G

sequence I — 1 “1”
of edge

activations
T

_—

G/

10/22

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

Initial majority is “0”!

G

sequence I — 1 “1”
of edge

activations
T

_—

G/

10/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

12/22

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
Each node initially has a coin = its opinion

A
Uy Y
Uus| e
(V%)
Uq
>
° °

12/22

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

A A
Uy o Uy
53 o — 53
2 2
Uy Ui| e o
> >
o O O o

12/22

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

A A
U4 ® U4
53 o — 53 A
2 2 -
U1 Ul | e O
. .
O o O o

12/22

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy o Uy Coins are
ug o — ug A accumulated
U3 U1 | o ° on few nodes
- .
® ® o ®

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(v)
new coins(v) =coins(u)Ucoins(v)

12/22

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy ° U4 Coins are
u u S
ug ° — ug ¥, accumulated
U1 Ul | o ° on few nodes
> >
. ‘ . .

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(
new coins(v) =coins(u)Ucoins(v

v)| Potential function
)

>, |coins(v)|?

12/22

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy ° U4 Coins are
u u S
ug ° — ug ¥, accumulated
U1 Ul | o ° on few nodes
> >
. ‘ . .

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(
new coins(v) =coins(u)Ucoins(v

v)| Potential function
)

>, |coins(v)|?

Conjecture. O(2%) states are necessary.

12/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

14/22

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

14/22

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

14/22

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

2e-x \ 12l 1 *
S22)% " config.s all nodes output c*.

In at most ~ (%

14/22

(k%) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

: =]
In at most ~ (Z&2-)& 1

There are .
~ N A N : o :
config.s of the form : with other opinions

config.s all nodes output c*.

14/22

(k%) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

[2]
In at most ~ (&2) ® !

There are .
- 1 NE—D . ey : o :
config.s of the form : with other opinions

config.s all nodes output c*.

Pigeonhole: if |X| < k* — k, 2 config.s G and G’ i;\-
converge to identical configurations.

14/22

(k%) Lower Bound II

(z—1)/2

: pairs of
L : .
k7 :nodes with
i other

: OPINIONS

(z—1)/2

/!

. : pairs of
« «» nodes with >~ 2 — 1 “c*’
¢t
' other

: OPINIONS

15/22

(k%) Lower Bound II

« I

Yy C

w—1))3
: pairs of
« v inodes with
i other
Eopinions

Wlog there is opinion ¢’ and vy s.t.
o adding y “c’” to G makes

¢ plurality in G
o adding y “c’ to G’ leaves
c* plurality in G’.

(w—1))3
: pairs of
« v inodes with
i other
Eopinions

VY — 1 “c*”

15/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

17/22

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

17/22

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not
clear who should
play at each match:
winner of previous
matches can change.

17/22

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.

w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not .
c1 may already have been competing
clear who should against c4: it cannot simply start afresh

play at each match:
C1 VS C3 C1 VS C3

winner of previous
matches can change. C1 C3 —> (1 C4
Ci C2 C3 (4 CiL Cy C3 C4
17/29

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not c1 may already have been competing

clear who should against c4: it cannot simply start afresh

play at each match:
C1 VS C3 C1 VS C3

winner of previous
matches can change. C1 €3 —— C4
Solved if nodes

C

C1
can change opinion. €1 €2 €3 ©4 1 C2 C3 C4
17/92

Dynamic Plurality Consensus

|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

States and weights

Updating the state

S w(s) Sq, Co = 1 changes to ¢, = -1 | s,

[—2] —2 [0]9 <_1>9 <0>a <1> [_2]

—1] 1 1] —1]

. 2 0

[0]’< ﬂ§}<0>’<1> ? Sq, Co = —1 changes to ¢, =1 sh

0], (=1),(0), (1) 2]

2 : -1 1

Transitions 2 o

Sa \Sb 2] [—1] 0] 1] 2]
=2] | (=2 [=2]) (=2, [-1]) (=2}, (=1) (=1, (=1)) ([0}, [0])
-1) (=1 =2) (=1 0=1)) (=1.(=1) (oL (o) ((1), [1])
o | ((=1),[=2) (=1, [-1]) ([0],] (1, 1) (1), [2)
1] | (=0, [=1) ([0}, [0]) (1), ((1], [1]) ([1];[2])
2] (0], [0]) (1], (1)) (12, ¢ (21,01 (2,[2])
weak | ((=1),[-2])) ({(-1),[-1]) ({0),[0] (1, [1) (1),[2])

18/22

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

18/22

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

18/22

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

18/22

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

18/22

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

Balance ot opinions
equals
balance of soldiers

18/22

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

20/22

O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

Idea. Have agents arrange opinions in a linked list.

Problem. Multiple lists can *
appears. How to delete/merge lists? i o

20/22

O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

Idea. Have agents arrange opinions in a linked list.

Problem. Multiple lists can *
appears. How to delete/merge lists? i o

Ideas. Start deleting from roots of lists and append
elements by travelling from root to last item.

u will v u starts by
i .* inform o * designating v as
Ui """" P parent that parent. Eventually u
list shall be designates as parents
deleted. v’s child, and so on.

20/22

Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

21/22

Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

(Ordered) plurality consensus in
population protocols with fair
scheduler can be solved using O(k°)
states per agent.

21/22

Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

(Ordered) plurality consensus in
population protocols with fair
scheduler can be solved using O(k°)
states per agent.

What is the space complexity of
plurality consensus in population
protocols with fair scheduler?

21/22

Thank You

	Computing through Dynamics: Principles for Distributed Coordination
	Outline
	k-Plurality Consensus
	Population Protocols
	Population Protocols: Schedulers
	Self-Stabilization
	Majority (2-Plurality) Consensus: 2-bit Protocol
	Majority Consensus: 2-bit Lower Bound
	Salehkaleybar et al.'s Conjecture [TSIPN'15]
	$\Omega(k^2)$ Lower Bound I
	$\Omega(k^2)$ Lower Bound II
	Plurality Consensus via Tournament Tree
	Dynamic Plurality Consensus
	$O(k^{11})$ Upper Bound (Refunting Conjecture)
	Open Problem

