Natural Distributed Algorithms - Lecture -

Simple Distributed Graph Sparsification as an Inquiry towards Neural Pruning

Emanuele Natale CNRS - UCA

CdL in Informatica
Università degli Studi di Roma
"Tor Vergata"
Università di Roma

The Brain and Computation

Von Neumann, Turing, McCulloch, Pitts, Barlow... were interested in the other field to better understand theirs.

Both fields have exploded in knowledge but have also grown further apart.

Computational Neuroscience: Data

Computational Neuroscience: Theory

Issues:

- Far from experimentalists

THEORETICAL NEUROSCIENCE

Computational and Marhematical Modeling of Neural Systems

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided

THEORETICAL NEUROSCIENCE

Compurational and Mathematical Modeling of Neural Systems

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Theories:

THEORETICAL NEUROSCIENCE

Computational and Marhematical Modeling of Neural Systems

- Neural networks for learning: Pitts \& McCulloch ('47), Rosenblatt ('58), Hubel \& Wiesel ('62), ...

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Theories:

- Neural networks for learning: Pitts \& McCulloch ('47), Rosenblatt ('58), Hubel \& Wiesel ('62), ...
- Neural-dynamics model for specific neural phenomena (associative memory, grid cells, place cells, oscillations, ...)

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Theories:

- Neural networks for learning: Pitts \& McCulloch ('47), Rosenblatt ('58), Hubel \& Wiesel ('62), ...
- Neural-dynamics model for specific neural phenomena (associative memory, grid cells, place cells, oscillations, ...)
- Works from Theoretical Computer Science: Neuroidal Model by Valiant ('94), models of associative memory by Papadimitriou et al, ('15), Lynch et al. ('16) and Navlakha et al. ('17), ...

Does the Brain use Algorithms?

How are you aware of your location in space?

2014 Nobel
Prize in
Physiology to
J. O'Keefe \& M.
B. and E. Moser for discovery of cells that constitute a positioning system in the brain

Neuron 1

Neuron 2

The Principle of Efficiency

The Principle of Efficiency

Grid Cells Encodes Position Efficiently

Neural Pruning

Neural pruning is a fundamental phenomenon in nervous systems. What are the algorithmic principles that guide it?

Research article
Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons

Darren W. Williams ${ }^{\star, \dagger}$ and James W. Truman
|

WIREs Developmental Biology
 A fly's view of neuronal remodeling

Shiri P. Yaniv and Oren Schuldiner*

Published as: Annu Rev Cell Dev Biol. 2015 November 13; 31: 779-805.

Sculpting Neural Circuits by Axon and Dendrite Pruning

Martin M. Riccomagno ${ }^{1}$ and Alex L. Kolodkin ${ }^{2}$

Neural Pruning Example:

Innervation in Muscular Junctions

A sparsification process occurs which aims at having at least one axon per innervation site.

Picture from Turney \&

Outline of the rest of the talk

- Definitions: Graph

Expansion

- Motivation for this work
- Our Results
- Crash Course on Encoding Arguments
- Some Proof Ideas

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Problem: Very big sets have big $\operatorname{vol}(S)$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Problem: Very big sets have big $\operatorname{vol}(S)$

- Attempt 3. We consider the "worst" between S and $V-S: \frac{e(S, V-S)}{\min \{v o l(S), v o l(V-S)\}}$

Graph Expansion I

What is a good measure of connectedness for a set of nodes S ?

- Attempt 1. Number of edges going out of S : $e(S, V-S)=|\{(u, v) \mid u \in S, v \in V-S\}|$

Problem: big sets are better than small ones

- Attempt 2. We also divide by the sum of its degrees $\operatorname{vol}(S)=\sum_{u \in S} d_{u}: \frac{e(S, V-S)}{\operatorname{vol}(S)}$

Problem: Very big sets have big $\operatorname{vol}(S)$

- Attempt 3. We consider the "worst" between S and $V-S: \frac{e(S, V-S)}{\min \{v o l(S), v o l(V-S)\}}$

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{v o l(S)}$ assuming $S \leq \frac{n}{2}$

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\operatorname{vol}(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\operatorname{vol}(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph G is ϵ-expander if $\min _{S} \phi(S) \geq \epsilon$

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{v o l(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph G is ϵ-expander if $\min _{S} \phi(S) \geq \epsilon$

Example:
In an Erős-Rényi graph $G_{n, p}$, include each edge with prob p.

Graph Expansion II

In regular graphs $\frac{e(S, V-S)}{\min \{\operatorname{vol}(S), v o l(V-S)\}}$ is equivalent to $\phi(S)=\frac{e(S, V-S)}{\text { vol }(S)}$ assuming $S \leq \frac{n}{2}$

Interpretation. In regular graphs, $\phi(S)=$ Pr (random walk on random node of S exits it)

Graph G is ϵ-expander if $\min _{S} \phi(S) \geq \epsilon$

Example:
In an Erős-Rényi graph $G_{n, p}$, include each edge with prob p.
For any $p \gg \frac{\log n}{n}$, they are good expanders with high probability.

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Proof.
A adjacency matrix,
1_{S} indicator vector of S,
J all-1 matrix.

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Proof.

A adjacency matrix,
1_{S} indicator vector of S, J all-1 matrix.

$$
\begin{gathered}
1_{S}^{T} A 1_{S} \\
2 e(S, S)-\frac{\Delta}{n}|S|^{2}
\end{gathered} 1_{S}^{T}\left(\frac{\Delta}{n} J\right) 1_{S}
$$

Expander Mixing Lemma

Expanders can be studied using linear algebra (Spectral Graph Theory)

Lemma. For any subset S of nodes of a Δ-regular graph with 2nd-largest eigenvalue of adjecency matrix λ :

$$
e(S, S) \leq|S|\left(\frac{|S|}{2} \frac{\Delta}{n}+\frac{\lambda}{2}\right)
$$

Proof.

A adjacency matrix, 1_{S} indicator vector of S, J all-1 matrix.

$$
\begin{aligned}
& 1_{S}^{T} A 1_{S} \quad 1_{S}^{T}\left(\frac{\Delta}{n} J\right) 1_{S} \\
& 2 e(S, S)-\frac{\Delta}{n}|S|^{2} \\
& =1_{S}^{T}\left(A-\frac{\Delta}{n} J\right) 1_{S} \\
& \leq \lambda| | 1_{S} \|^{2} \\
& = \\
& \lambda
\end{aligned}|S|
$$

Algorithm Request - Accept if Enough Space

Algorithm $\operatorname{RAES}(G, d, c)$ for each node v :

- Set $d_{\text {out }}=0$ and assume connections are directed
- At the start of each round,
if $\left(d_{\text {out }}<d\right)$ then
send $d-d_{\text {out }}$ requests to random neighbors
- At the end of each round if (current requests + new ones $\leq c d$) then accept all request else
reject all current requests
if $\left(d_{\text {out }}=d\right)$ then
forget edge orientation

Example with $d=5$

u is missing 2 connections.
u asks to connect to w and v.
v has already $c d$ incoming connections and refuses u 's requests.

Mathematical Interest of the Process

Distributed construction of constant-degree expanders

Corollary of

 Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]:

Every dense expander has a constant-degree subgraph which is also an expander.

Mathematical Interest of the Process

Distributed construction of constant-degree expanders

Corollary of Marcus-Spielman-Srivastava proof's of the Kadison-Singer conjecture [Ann. of Math. '15]:

Every dense expander has a constant-degree subgraph which is also an expander.

But the proof is non-constructive: How to find the low-degree sub-expander?

Distributed-Computing Interest of the Process

Several works propose complicated distributed construction of expanders:

- Law and Siu [INFOCOM'03]: incremental construction using Hamiltonian cycles

Distributed-Computing Interest of the Process

Several works propose complicated distributed construction of expanders:

- Law and Siu [INFOCOM'03]: incremental construction using Hamiltonian cycles
- Allen-Zhu et al. [SODA'16]: start with a $\Omega(\log n)$-regular graph and increase its expansion

Bonus Motivations from CS

- Parallel algorithms for sparsifying a graph don't achieve sublogarithmic degree and assume weighted edges

Bonus Motivations from CS

- Parallel algorithms for sparsifying a graph don't achieve sublogarithmic degree and assume weighted edges
- Model creation of overlay networks in protocols such as BitTorrent (P2P) or Bitcoin (distributed ledgers)

Bonus Motivations from CS

- Parallel algorithms for sparsifying a graph don't achieve sublogarithmic degree and assume weighted edges
- Model creation of overlay networks in protocols such as BitTorrent (P2P) or Bitcoin (distributed ledgers)

- Distributed construction of constant-degree graph implies constant-load balancing algorithm.
Previous works: almost-tight load balancing in poly time (Berenbrink et al., SPAA'14)

The Theorem

Theorem [Becchetti, Clementi, N., Pasquale, Trevisan. 2019.
"Finding a Bounded-Degree Expander Inside a Dense One."]
For every $d \gg 1,0<\alpha \leq 1, c \gg \frac{1}{\alpha^{2}}$, and αn-regular graph G, w.h.p.
$R A E S(G, d, c)$ runs in $\mathcal{O}(\log n)$ parallel rounds with message complexity is $\mathcal{O}(n)$.
Moreover, if G 's 2nd-largest eigenvalue λ of normalized adjacency matrix is $\leq \epsilon \alpha^{2}$, then w.h.p. $R A E S(G, d, c)$ creates a ϵ-expander with degrees between d and $d(c+1)$.

The Theorem

Theorem [Becchetti, Clementi, N., Pasquale, Trevisan. 2019.
"Finding a Bounded-Degree Expander Inside a Dense One."]
For every $d \gg 1,0<\alpha \leq 1, c \gg \frac{1}{\alpha^{2}}$, and αn-regular graph G, w.h.p.
$R A E S(G, d, c)$ runs in $\mathcal{O}(\log n)$ parallel rounds with message complexity is $\mathcal{O}(n)$.
Moreover, if G 's 2nd-largest eigenvalue λ of normalized adjacency matrix is $\leq \epsilon \alpha^{2}$, then w.h.p. $R A E S(G, d, c)$ creates a ϵ-expander with degrees between d and $d(c+1)$.

Proof Technique: Encoding Argument
(omitted: message complexity using martingale theory)

Encoding Arguments

Encoding Lemma.
If X finite set and
$C: X \rightarrow\{0,1\}^{*}$ a (partial \& prefix-free) encoding of X then

$$
\operatorname{Pr}_{x \sim U n i f(X)}(|C(x)| \leq \log |X|-s) \leq 2^{-s}
$$

Encoding Arguments

Encoding Lemma.
If X finite set and
$C: X \rightarrow\{0,1\}^{*}$ a (partial \& prefix-free) encoding of X then

$$
\operatorname{Pr}_{x \sim U n i f(X)}(|C(x)| \leq \log |X|-s) \leq 2^{-s}
$$

Proof. $\frac{2^{\log |X|-s}}{|X|} \leq 2^{-s}$.

Encoding Arguments

Encoding Lemma.

If X finite set and
$C: X \rightarrow\{0,1\}^{*}$ a (partial \& prefix-free) encoding of X then

$$
\operatorname{Pr}_{x \sim U n i f(X)}(|C(x)| \leq \log |X|-s) \leq 2^{-s}
$$

Proof. $\frac{2^{\log |X|-s}}{|X|} \leq 2^{-s}$.
Suggested reading: P. Morin et al. Encoding Arguments, ACM Comp. Surveys '17.

Encoding Argument Example

Flip a coin n times: $0110010 \cdots$.
Probability of $\log n+s$ consecutive heads?

Encoding Argument Example

Flip a coin n times: $0110010 \cdots$.
Probability of $\log n+s$ consecutive heads?

Call B a bad substring of $\log n+s$ consecutive heads.
Consider encoding C_{B} for strings containing B :
$\left(\begin{array}{l}\text { index } i \text { of first } \\ \text { bit of } B\end{array}\right.$
$\log n$ bits
all other bits of the string except those at , entry $i, i+1, \ldots, i+\log n+s$
$n-(\log n+s)$ bits

Encoding Argument Example

Flip a coin n times: $0110010 \cdots$. Probability of $\log n+s$ consecutive heads?

Call B a bad substring of $\log n+s$ consecutive heads.
Consider encoding C_{B} for strings containing B :
$\left(\begin{array}{l}\text { index } i \text { of first } \\ \text { bit of } B\end{array}\right.$
$\log n$ bits
all other bits of the string except those at , entry $i, i+1, \ldots, i+\log n+s$

$$
n-(\log n+s) \text { bits }
$$

By the Encoding Lemma
$\operatorname{Pr}\left(\left|C_{B}(x)\right| \leq \log |X|-s\right)=\operatorname{Pr}\left(\left|C_{B}(x)\right| \leq n-s\right) \leq 2^{-s}$

Encoding Arg. for Running Time

Implementation: v_{1}
For each node v_{2} v_{i}, array of $d T \quad v_{3}$ entries of $\log \Delta$ bits

If RAES doesn't terminate in
$O(\log n)$ rounds there exist node v with a rejected v_{n} request at each round

	\vdots	\vdots	\vdots	\vdots	\vdots

$d T$ slots of $\log \Delta$ random bits

Encoding for Always-Rejected v

We encode with the following bits

- v 's identity: $\log n$

Encoding for Always-Rejected v

We encode with the following bits
factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$

Encoding for Always-Rejected v

We encode with the following bits
factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$

Encoding for Always-Rejected v

We encode with the following bits factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d}$

Encoding for Always-Rejected v

We encode with the following bits factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d}$
- destinations of accepted requests: $d \log \Delta$

Encoding for Always-Rejected v

We encode with the following bits factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d}$
- destinations of accepted requests: $d \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d\right) \log \frac{n}{c}$

Encoding for Always-Rejected v

We encode with the following bits factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d}$
- destinations of accepted requests: $d \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d\right) \log \frac{n}{c}$ Observation: at each round there are at
 most $\frac{n}{c}$ rejecting nodes

Encoding for Always-Rejected v

We encode with the following bits factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d}$
- destinations of accepted requests: $d \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d\right) \log \frac{n}{c}$

Observation: at each round there are at most $\frac{n}{c}$ rejecting nodes

Encoding for Always-Rejected v

We encode with the following bits factor 2 because

- v 's identity: $\log n$
- number of v 's requests $\ell_{v}: 2 \log \ell_{v}$
- v 's accepted requests: $2 \log d$
- position of v 's accepted requests in $\ell_{v}: \log \binom{\ell_{v}}{d}$
- destinations of accepted requests: $d \log \Delta$
- destinations of rejected requests: $\left(\ell_{v}-d\right) \log \frac{n}{c}$

Observation: at each round there are at most $\frac{n}{c}$ rejecting nodes

After calculations we see that we save
$\frac{1}{2} \ell_{v} \log (\alpha c)-\log n=\Omega(\log n)$

Encoding Argument for Expansion

Implementation: ${ }^{v_{1}}$
For each node v_{2} v_{i}, array of $d T \quad v_{3}$ entries of $\log \Delta$ bits

We show that if the execution results in a non-expander, then it can be represented with

$d T$ slots of $\log \Delta$ random bits

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:
$\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to

$$
V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}
$$

ϵ_{v} : fraction of v 's accepted connections towards $V-S$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to

$$
V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}
$$

ϵ_{v} : fraction of v 's accepted connections towards $V-S$

- Destinations of connections from S :

$$
\begin{aligned}
& \sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{\text {connesections to } S} \epsilon_{v} d \log \Delta \\
& \begin{array}{l}
\delta_{v}: \text { fraction of } v \text { 's edges } \\
\text { towards } V-S \text { in } G
\end{array}
\end{aligned}
$$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to $V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to $V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :
$\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta$ connections to S
- Rejected requests
- Unused randomness (after node's termination)

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to

$$
V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}
$$

ϵ_{v} : fraction of v 's accepted connections towards $V-S$

- Destinations of connections from S :
$\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta$
connections to S
connections to $V-S$ (uncompressed)
- Rejected requests
- Unused randomness (after node's termination)

Compressing Accepted Connections I

To represent accepted requests from S we need

$$
\begin{gathered}
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
\leq s d \log \Delta-\frac{1-\epsilon}{2} s d \log \frac{n}{s}+2 \epsilon d s
\end{gathered}
$$

where $\epsilon=\frac{1}{s} \sum_{v \in S} \epsilon_{v}$

Compressing Accepted Connections I

To represent accepted requests from S we need

$$
\begin{gathered}
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
\leq s d \log \Delta-\frac{1-\epsilon}{2} s d \log \frac{n}{s}+2 \epsilon d s
\end{gathered}
$$

where $\epsilon=\frac{1}{s} \sum_{v \in S} \epsilon_{v}$
With simple calculations
$s d \log \Delta-\left(\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta\right)$
$\geq d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$

Compressing Accepted Connections I

To represent accepted requests from S we need

$$
\begin{gathered}
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta \\
\leq s d \log \Delta-\frac{1-\epsilon}{2} s d \log \frac{n}{s}+2 \epsilon d s
\end{gathered}
$$

where $\epsilon=\frac{1}{s} \sum_{v \in S} \epsilon_{v}$
With simple calculations
$s d \log \Delta-\left(\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta\right)$ $\geq d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$

Two cases: $s<\alpha \Delta$ and $\alpha \Delta \leq s \leq \frac{n}{2} \ldots$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$
Case $\alpha \Delta \leq s \leq \frac{n}{2}$
Rewrite $-(1-\epsilon) s d \sum_{v \in S} \frac{1-\epsilon_{v}}{(1-\epsilon) s} \log \frac{1}{1-\delta_{v}}$
use Jensen's inequality to get $(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$
Case $\alpha \Delta \leq s \leq \frac{n}{2}$
Rewrite $-(1-\epsilon) s d \sum_{v \in S} \frac{1-\epsilon_{v}}{(1-\epsilon) s} \log \frac{1}{1-\delta_{v}}$
use Jensen's inequality to get $(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}$
To bound $1-\delta$ we use the Expander Mixing Lemma:

$$
(1-\delta) \leq \frac{s}{n}+\lambda
$$

Compressing Accepted Connections II

Goal: bound $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}$
Case $s<\alpha \Delta$
Use $\Delta\left(1-\delta_{v}\right) \leq s$ and $\left(\frac{\Delta}{s}\right)^{2}>\frac{\Delta}{s} \frac{1}{\alpha}=\frac{\Delta}{s} \frac{n}{\Delta}=\frac{n}{s}$
hence $d \sum_{v \in S}\left(1-\epsilon_{v}\right) \log \frac{1}{1-\delta_{v}}>\frac{1-\epsilon}{2} s d \log \frac{n}{s}$
Case $\alpha \Delta \leq s \leq \frac{n}{2}$
Rewrite $-(1-\epsilon) s d \sum_{v \in S} \frac{1-\epsilon_{v}}{(1-\epsilon) s} \log \frac{1}{1-\delta_{v}}$
use Jensen's inequality to get $(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}$
To bound $1-\delta$ we use the Expander Mixing Lemma:

$$
(1-\delta) \leq \frac{s}{n}+\lambda
$$

together with hypothesis on s and λ, it implies

$$
(1-\epsilon) s d \log \frac{1-\epsilon}{1-\delta}>(1-\epsilon) s d \log \frac{n}{s}-2 \epsilon d s
$$

Compressing the Non-Expanding Set

Encoding:

- Randomness of $V-S$
- Set $S: \log |S|+\log \binom{n}{s}$
- Accepted connections:

$$
\sum_{v \in S} 2 \log \ell_{v}+\log \binom{\ell_{v}}{d}
$$

- Accepted connections from S to
$V-S: \sum_{v \in S} 2 \log \left(\epsilon_{v} d\right)+\log \binom{d}{\epsilon_{v} d}$
ϵ_{v} : fraction of v 's accepted connections towards $V-S$
- Destinations of connections from S :

$$
\sum_{v \in S}\left(1-\epsilon_{v}\right) d \log \left(\left(1-\delta_{v}\right) \Delta\right)+\sum_{v \in S} \epsilon_{v} d \log \Delta
$$

- Rejected requests
- Unused randomness
(after node's termination)

Compressing Rejected Requests (Idea)

With $\ell_{v}-d^{\prime}$ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which we use the following notions:

Semi-saturated nodes $s s_{t}$: accepted connections until time $t-1+$ requests from $V-S$ are $>\frac{d c}{2}$
Critical nodes c_{t} : not semi-saturated at time t but accepted + rejected connections are $>c d$

Compressing Rejected Requests (Idea)

With $\ell_{v}-d^{\prime}$ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which we use the following notions:

Semi-saturated nodes $s s_{t}$: accepted connections until time $t-1+$ requests from $V-S$ are $>\frac{d c}{2}$
Critical nodes c_{t} : not semi-saturated at time t but accepted + rejected connections are $>c d$

Claim. semi-saturated nodes $\leq \frac{n}{2 n}$ and critical nodes $\leq \frac{n}{c}$.

Compressing Rejected Requests (Idea)

With $\ell_{v}-d^{\prime}$ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which we use the following notions:

Semi-saturated nodes $s s_{t}$: accepted connections until time $t-1+$ requests from $V-S$ are $>\frac{d c}{2}$
Critical nodes c_{t} : not semi-saturated at time t but accepted + rejected connections are $>c d$

Claim. semi-saturated nodes $\leq \frac{n}{2 n}$ and critical nodes $\leq \frac{n}{c}$.
We can then write

$$
s s(v) \log \frac{2 n}{c}+\sum_{1}^{T} r c_{t}(v) \log c_{t}
$$

Where $\operatorname{rss}(v)$ is the number of rejected connections from v to semisaturated nodes and $r c_{t}(v)$ is the number of rejected connections from v to critical nodes at time t

Compression Summary

Set S

Size	Index of the set
$2 \log \|S\|+\log \binom{n}{\|S\|}$	

Subset of	Subset of	Destinations of	Destinations of
accepted requests	accepted requests in S	accepted requests ouside S (uncompressed) + + inside S (compressed)	rejected requests

$2 \log \ell_{v}+\log \binom{\ell_{v}}{d} \quad 2 \log \left(\varepsilon_{v} d\right)+\log \binom{d}{\varepsilon_{v} d} \quad \begin{aligned} & \varepsilon_{v} d \log \Delta+ \\ & +\left(1-\varepsilon_{v}\right) d \log ((1-\delta) \Delta)\end{aligned}, ~(1)$

Semi-satured / Critical	S.-sat. dest.	Crit. dest.	Crit. dest.	$\begin{aligned} & \text { S.-sat. } \\ & \text { dest. } \end{aligned}$	$\begin{aligned} & \text { S.-sat. } \\ & \text { dest. } \end{aligned}$	Crit. dest.
ℓv-d	$\log (n / c)$	$\operatorname{g} c_{t_{1}}$	$\log c_{t_{2}} \log (n / c)$		$\log (n / c)$	$\log c_{t_{k}}$

Project Idea

Simulate the RAES protocol on random Δ-regular graphs, varying the parameters Δ, d and c.

- Becchetti, Clementi, N., Pasquale, Trevisan. 2019. "Finding a Bounded-Degree Expander Inside a Dense One.

Simulations should be performed using open-source software with some effort to make them efficient (e.g. coded in Python using Numpy), and the source code should be made publicly available (e.g. on Gitlab) and GPL licensed.

ATTENTION: Creating a random Δ-regular graph is not immediate!

