
1/30

Emanuele Natale
CNRS - UCA

Natural Distributed Algorithms
- Lecture -

Simple Distributed Graph Sparsification
as an Inquiry towards Neural Pruning

CdL in Informatica
Università degli Studi di Roma

“Tor Vergata”

2/30

The Brain and Computation

Von Neumann, Turing, McCulloch, Pitts, Barlow... were
interested in the other field to better understand theirs.

Both fields have exploded in knowledge but have also grown
further apart.

3/30

Computational Neuroscience: Data
1 mm3 of
mouse brain
=⇒ 300 TB
of image data

4/30

Computational Neuroscience: Theory

• Far from experimentalists
Issues:

4/30

Computational Neuroscience: Theory

• Far from experimentalists
• Internally divided

Issues:

4/30

Computational Neuroscience: Theory

• Far from experimentalists
• Internally divided
• Led mostly by physicists

Issues:

4/30

Computational Neuroscience: Theory

• Far from experimentalists
• Internally divided
• Led mostly by physicists

Issues:

Theories:
• Neural networks for learning: Pitts &

McCulloch (’47), Rosenblatt (’58), Hubel & Wiesel (’62), ...

4/30

Computational Neuroscience: Theory

• Far from experimentalists
• Internally divided
• Led mostly by physicists

Issues:

Theories:
• Neural networks for learning: Pitts &

McCulloch (’47), Rosenblatt (’58), Hubel & Wiesel (’62), ...
• Neural-dynamics model for specific neural phenomena

(associative memory, grid cells, place cells, oscillations, ...)

4/30

Computational Neuroscience: Theory

• Far from experimentalists
• Internally divided
• Led mostly by physicists

Issues:

Theories:
• Neural networks for learning: Pitts &

McCulloch (’47), Rosenblatt (’58), Hubel & Wiesel (’62), ...
• Neural-dynamics model for specific neural phenomena

(associative memory, grid cells, place cells, oscillations, ...)
• Works from Theoretical Computer Science: Neuroidal Model by

Valiant (’94), models of associative memory by Papadimitriou
et al, (’15), Lynch et al. (’16) and Navlakha et al. (’17), ...

5/30

Does the Brain use Algorithms?

How are you
aware of your
location in
space?

2014 Nobel
Prize in
Physiology to
J. O’Keefe & M.
B. and E. Moser
for discovery of
cells that
constitute a
positioning
system in the
brain

Neuron 1 Neuron 2

Neuron 4Neuron 3

50 cm

6/30

The Principle of Efficiency

Position (x, y) 8× 8 = 64
bits...

6/30

The Principle of Efficiency

Position (x, y) 8× 8 = 64
bits...

Position
(x = x1x2x3,
y = y1y2y3) y1

y2

y3

x1 x2 x3

+

6 + 6 = 12
bits

7/30

Grid Cells Encodes Position Efficiently
Neuron 1 Neuron 2

Neuron 4Neuron 3

50 cm

8/30

Neural Pruning

Neural pruning is a fundamental phenomenon in nervous
systems. What are the algorithmic principles that guide it?

9/30

[Gan & Lichtman, Science ’03; Turney & Lichtman, PLOS Bio.
’12; Tapia et al., Neuron ’12]:

Picture from Turney &
Lichtman, PLOS Bio. ’12

A sparsification process occurs
which aims at having at least
one axon per innervation site.

Neural Pruning Example:
Innervation in Muscular Junctions

10/30

Outline of the rest of the talk

• Definitions: Graph
Expansion

• Motivation for this work

• Our Results

• Crash Course on
Encoding Arguments

• Some Proof Ideas

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

Problem: big sets are better than small ones

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

Problem: Very big sets have big vol(S)

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

Problem: Very big sets have big vol(S)

• Attempt 3. We consider the “worst” between
S and V − S: e(S,V−S)

min{vol(S),vol(V−S)}

11/30

Graph Expansion I

What is a good measure of connectedness for a set of
nodes S?

• Attempt 1. Number of edges going out of S:
e(S, V − S) = |{(u, v)|u ∈ S, v ∈ V − S}|

Problem: big sets are better than small ones

• Attempt 2. We also divide by the sum of its
degrees vol(S) =

∑
u∈S du: e(S,V−S)

vol(S)

Problem: Very big sets have big vol(S)

• Attempt 3. We consider the “worst” between
S and V − S: e(S,V−S)

min{vol(S),vol(V−S)} conductance

12/30

Graph Expansion II

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

12/30

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

12/30

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

Graph G is ε-expander if minS φ(S) ≥ ε

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

12/30

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

Graph G is ε-expander if minS φ(S) ≥ ε

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

Example:
In an Erős-Rényi graph Gn,p,
include each edge with prob p.

12/30

Graph Expansion II

Interpretation. In regular graphs, φ(S) =
Pr(random walk on random node of S exits it)

Graph G is ε-expander if minS φ(S) ≥ ε

In regular graphs e(S,V−S)
min{vol(S),vol(V−S)} is equivalent to

φ(S) = e(S,V−S)
vol(S) assuming S ≤ n

2

Example:
In an Erős-Rényi graph Gn,p,
include each edge with prob p.
For any p� logn

n , they are good
expanders with high probability.

13/30

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

13/30

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

13/30

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

Proof.
A adjacency matrix,
1S indicator vector of S,
J all-1 matrix.

13/30

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

Proof.
A adjacency matrix,
1S indicator vector of S,
J all-1 matrix.

1TSA1S

2e(S, S)− ∆
n |S|

2

1TS (∆
n J)1S

13/30

Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a ∆-regular
graph with 2nd-largest eigenvalue of adjecency
matrix λ :

e(S, S) ≤ |S|(|S|2
∆
n + λ

2)

Proof.
A adjacency matrix,
1S indicator vector of S,
J all-1 matrix.

1TSA1S

2e(S, S)− ∆
n |S|

2

2nd-largest
eigenvalue

1TS (∆
n J)1S

= 1TS (A− ∆
n J)1S

≤ λ||1S ||2 = λ|S|

14/30

Algorithm Request - Accept if Enough Space

Example
with d = 5 u

v

w

u is missing 2 connections.
u asks to connect to w and v.
v has already cd incoming connections
and refuses u’s requests.

Algorithm RAES(G, d, c) for each node v:
• Set dout = 0 and assume connections are directed
• At the start of each round,

if (dout < d) then
send d− dout requests to random neighbors

• At the end of each round
if (current requests + new ones ≤ cd) then

accept all request
else

reject all current requests

if (dout = d) then
forget edge orientation

15/30

Mathematical Interest of the Process

Distributed construction of constant-degree expanders

Corollary of
Marcus-Spielman-Srivastava
proof’s of the
Kadison-Singer conjecture
[Ann. of Math. ’15]:

Every dense expander has a constant-degree subgraph
which is also an expander.

15/30

Mathematical Interest of the Process

Distributed construction of constant-degree expanders

Corollary of
Marcus-Spielman-Srivastava
proof’s of the
Kadison-Singer conjecture
[Ann. of Math. ’15]:

But the proof is non-constructive:
How to find the low-degree sub-expander?

Every dense expander has a constant-degree subgraph
which is also an expander.

16/30

Distributed-Computing Interest of the Process

Several works propose complicated distributed
construction of expanders:

• Law and Siu [INFOCOM’03]: incremental
construction using Hamiltonian cycles

16/30

Distributed-Computing Interest of the Process

u v

zw

u v

zw

Several works propose complicated distributed
construction of expanders:

• Law and Siu [INFOCOM’03]: incremental
construction using Hamiltonian cycles

• Allen-Zhu et al. [SODA’16]: start with a
Ω(logn)-regular graph and increase its expansion

17/30

Bonus Motivations from CS

• Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

17/30

Bonus Motivations from CS

• Model creation of overlay
networks in protocols such as
BitTorrent (P2P) or Bitcoin
(distributed ledgers)

• Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

17/30

Bonus Motivations from CS

• Model creation of overlay
networks in protocols such as
BitTorrent (P2P) or Bitcoin
(distributed ledgers)

• Distributed construction of constant-degree graph implies
constant-load balancing algorithm.
Previous works: almost-tight load balancing in poly time
(Berenbrink et al., SPAA’14)

• Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

18/30

The Theorem

Theorem [Becchetti, Clementi, N., Pasquale, Trevisan. 2019.
“Finding a Bounded-Degree Expander Inside a Dense One.”]
For every d� 1, 0 < α ≤ 1, c� 1

α2 , and αn-regular
graph G, w.h.p.
RAES(G, d, c) runs in O(logn) parallel rounds
with message complexity is O(n).
Moreover, if G’s 2nd-largest eigenvalue λ of
normalized adjacency matrix is ≤ εα2, then w.h.p.
RAES(G, d, c) creates a ε-expander with degrees
between d and d(c+ 1).

18/30

The Theorem

Proof Technique: Encoding Argument
(omitted: message complexity using martingale theory)

Theorem [Becchetti, Clementi, N., Pasquale, Trevisan. 2019.
“Finding a Bounded-Degree Expander Inside a Dense One.”]
For every d� 1, 0 < α ≤ 1, c� 1

α2 , and αn-regular
graph G, w.h.p.
RAES(G, d, c) runs in O(logn) parallel rounds
with message complexity is O(n).
Moreover, if G’s 2nd-largest eigenvalue λ of
normalized adjacency matrix is ≤ εα2, then w.h.p.
RAES(G, d, c) creates a ε-expander with degrees
between d and d(c+ 1).

19/30

Encoding Arguments

Encoding Lemma.
If X finite set and
C : X → {0, 1}∗ a (partial &
prefix-free) encoding of X then

Pr
x∼Unif(X)

(|C(x)| ≤ log |X| − s) ≤ 2−s

19/30

Encoding Arguments

Encoding Lemma.
If X finite set and
C : X → {0, 1}∗ a (partial &
prefix-free) encoding of X then

Proof. 2log |X|−s

|X| ≤ 2−s.

Pr
x∼Unif(X)

(|C(x)| ≤ log |X| − s) ≤ 2−s

19/30

Encoding Arguments

Suggested reading: P. Morin et al. Encoding
Arguments, ACM Comp. Surveys ’17.

Encoding Lemma.
If X finite set and
C : X → {0, 1}∗ a (partial &
prefix-free) encoding of X then

Proof. 2log |X|−s

|X| ≤ 2−s.

Pr
x∼Unif(X)

(|C(x)| ≤ log |X| − s) ≤ 2−s

20/30

Encoding Argument Example

Flip a coin n times: 0110010 · · · .
Probability of logn+ s consecutive
heads?

20/30

Encoding Argument Example

Flip a coin n times: 0110010 · · · .
Probability of logn+ s consecutive
heads?

Call B a bad substring of logn+ s consecutive heads.
Consider encoding CB for strings containing B:

index i of first
bit of B

all other bits of the string except those at
entry i, i+ 1, . . . , i+ logn+ s)(,

logn bits n− (logn+ s) bits

20/30

Encoding Argument Example

Flip a coin n times: 0110010 · · · .
Probability of logn+ s consecutive
heads?

Call B a bad substring of logn+ s consecutive heads.
Consider encoding CB for strings containing B:

index i of first
bit of B

all other bits of the string except those at
entry i, i+ 1, . . . , i+ logn+ s)(,

logn bits n− (logn+ s) bits

By the Encoding Lemma
Pr(|CB(x)| ≤ log |X|−s) = Pr(|CB(x)| ≤ n−s) ≤ 2−s

21/30

Encoding Arg. for Running Time

If RAES doesn’t
terminate in
O(logn) rounds
there exist node
v with a rejected
request at each
round

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d
• position of v’s accepted requests in `v: log

(
`v

d

)

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d
• position of v’s accepted requests in `v: log

(
`v

d

)
• destinations of accepted requests: d log ∆

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d
• position of v’s accepted requests in `v: log

(
`v

d

)
• destinations of accepted requests: d log ∆
• destinations of rejected requests: (`v − d) log n

c

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d
• position of v’s accepted requests in `v: log

(
`v

d

)
• destinations of accepted requests: d log ∆
• destinations of rejected requests: (`v − d) log n

c

Observation: at each round there are at
most n

c rejecting nodes

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d
• position of v’s accepted requests in `v: log

(
`v

d

)
• destinations of accepted requests: d log ∆
• destinations of rejected requests: (`v − d) log n

c

Observation: at each round there are at
most n

c rejecting nodes

factor 2 because
prefix-free encoding

22/30

Encoding for Always-Rejected v

We encode with the following bits
• v’s identity: logn
• number of v’s requests `v: 2 log `v
• v’s accepted requests: 2 log d
• position of v’s accepted requests in `v: log

(
`v

d

)
• destinations of accepted requests: d log ∆
• destinations of rejected requests: (`v − d) log n

c

Observation: at each round there are at
most n

c rejecting nodes

After calculations we see that we save
1
2`v log(αc)− logn = Ω(logn)

factor 2 because
prefix-free encoding

23/30

Encoding Argument for Expansion

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

Implementation:
For each node
vi, array of dT
entries of log ∆
bits

We show that if
the execution
results in a
non-expander,
then it can be
represented with
ndt log ∆−
Ω(logn) bits

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
Encoding:
• Randomness of V − S

Uncompressed
Nodes in
V − S

Nodes
in S

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

Uncompressed
Nodes in
V − S

Nodes
in S

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

Uncompressed
Nodes in
V − S

Nodes
in S

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

δv: fraction of v’s edges
towards V − S in G

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
δv: fraction of v’s edges
towards V − S in G

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
• Unused randomness

(after node’s termination)

δv: fraction of v’s edges
towards V − S in G

24/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
• Unused randomness

(after node’s termination)

δv: fraction of v’s edges
towards V − S in G

25/30

Compressing Accepted Connections I

To represent accepted requests from S we need∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

≤ sd log ∆− 1− ε
2 sd log n

s
+ 2εds

where ε = 1
s

∑
v∈S εv

25/30

Compressing Accepted Connections I

To represent accepted requests from S we need∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

≤ sd log ∆− 1− ε
2 sd log n

s
+ 2εds

where ε = 1
s

∑
v∈S εv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

≥ d
∑
v∈S(1− εv) log 1

1−δv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

With simple calculations

25/30

Compressing Accepted Connections I

To represent accepted requests from S we need∑
v∈S

(1− εv)d log((1− δv)∆) +
∑
v∈S

εvd log ∆

≤ sd log ∆− 1− ε
2 sd log n

s
+ 2εds

where ε = 1
s

∑
v∈S εv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

≥ d
∑
v∈S(1− εv) log 1

1−δv

sd log ∆− (
∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆)

With simple calculations

Two cases: s < α∆ and α∆ ≤ s ≤ n
2 ...

26/30

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

26/30

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

Rewrite −(1− ε)sd
∑
v∈S

1−εv

(1−ε)s log 1
1−δv

use Jensen’s inequality to get (1− ε)sd log 1−ε
1−δ

Case α∆ ≤ s ≤ n
2

26/30

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

Rewrite −(1− ε)sd
∑
v∈S

1−εv

(1−ε)s log 1
1−δv

use Jensen’s inequality to get (1− ε)sd log 1−ε
1−δ

Case α∆ ≤ s ≤ n
2

To bound 1− δ we use the Expander Mixing Lemma:
(1− δ) ≤ s

n + λ

26/30

Compressing Accepted Connections II

Use ∆(1− δv) ≤ s and (∆
s)2 > ∆

s
1
α = ∆

s
n
∆ = n

s

hence d
∑
v∈S(1− εv) log 1

1−δv
> 1−ε

2 sd log n
s

Goal: bound d
∑
v∈S(1− εv) log 1

1−δv

Case s < α∆

Rewrite −(1− ε)sd
∑
v∈S

1−εv

(1−ε)s log 1
1−δv

use Jensen’s inequality to get (1− ε)sd log 1−ε
1−δ

Case α∆ ≤ s ≤ n
2

To bound 1− δ we use the Expander Mixing Lemma:
(1− δ) ≤ s

n + λ

together with hypothesis on s and λ, it implies
(1− ε)sd log 1−ε

1−δ > (1− ε)sd log n
s − 2εds

27/30

Compressing the Non-Expanding Set

• Set S: log |S|+ log
(
n
s

)
• Accepted connections:∑

v∈S 2 log `v + log
(
`v

d

)

Encoding:
• Randomness of V − S

• Accepted connections from S to
V − S:

∑
v∈S 2 log(εvd) + log

(
d
εvd

)
εv: fraction of v’s accepted connections towards V − S

• Destinations of connections from S:∑
v∈S(1− εv)d log((1− δv)∆) +

∑
v∈S εvd log ∆

Uncompressed
Nodes in
V − S

Nodes
in S

connections to S connections to V − S (uncompressed)

• Rejected requests
• Unused randomness

(after node’s termination)

28/30

Compressing Rejected Requests (Idea)

Semi-saturated nodes sst: accepted connections until time
t− 1 + requests from V − S are > dc

2
Critical nodes ct: not semi-saturated at time t but accepted
+ rejected connections are > cd

With `v − d′ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which
we use the following notions:

28/30

Compressing Rejected Requests (Idea)

Semi-saturated nodes sst: accepted connections until time
t− 1 + requests from V − S are > dc

2
Critical nodes ct: not semi-saturated at time t but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes ≤ n
2n and critical nodes ≤ n

c .

With `v − d′ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which
we use the following notions:

28/30

Compressing Rejected Requests (Idea)

Semi-saturated nodes sst: accepted connections until time
t− 1 + requests from V − S are > dc

2
Critical nodes ct: not semi-saturated at time t but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes ≤ n
2n and critical nodes ≤ n

c .

We can then write

With `v − d′ bits we encode which requests are rejected.
The hard part is compressing their destinations, for which
we use the following notions:

ss(v) log 2n
c +

∑T
1 rct(v) log ct

Where rss(v) is the number of rejected connections from v
to semisaturated nodes and rct(v) is the number of rejected
connections from v to critical nodes at time t

29/30

Compression Summary

30/30

Project Idea

Simulations should be performed using open-source software with some
effort to make them efficient (e.g. coded in Python using Numpy), and
the source code should be made publicly available (e.g. on Gitlab) and
GPL licensed.

Simulate the RAES protocol on random ∆-regular graphs,
varying the parameters ∆, d and c.

• Becchetti, Clementi, N., Pasquale, Trevisan. 2019. “Finding a
Bounded-Degree Expander Inside a Dense One.

ATTENTION: Creating a random ∆-regular graph is not
immediate!

	Find Your Place\\
Simple Distributed Algorithms for Community Detection
	The Brain and Computation
	Computational Neuroscience: Data
	Computational Neuroscience: Theory
	Does the Brain use Algorithms?
	The Principle of Efficiency
	Grid Cells Encodes Position Efficiently
	Neural Pruning
	Outline of the rest of the talk
	Graph Expansion I
	Graph Expansion II
	Expander Mixing Lemma
	Algorithm \textbf{R}equest - \textbf{A}ccept if \textbf{E}nough \textbf{S}pace
	Mathematical Interest of the Process
	Distributed-Computing Interest of the Process
	Bonus Motivations from CS
	The Theorem
	Encoding Arguments
	Encoding Argument Example
	Encoding Arg. for Running Time
	Encoding for Always-Rejected v
	Encoding Argument for Expansion
	Compressing the Non-Expanding Set
	Compressing Accepted Connections I
	Compressing Accepted Connections II
	Compressing the Non-Expanding Set
	Compressing Rejected Requests (Idea)
	Compression Summary
	Project Idea

