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The Brain and Computation —

\I

Von Neumann, Turing, McCulloch, Pitts, Barlow... were SIMONS
interested in the other field to better understand theirs. INSTITUTE

for the Theory of Computing

JOHN VON
NEUMANN

Both fields have exploded in knowledge but have also grown
further apart.
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Computational Neuroscience: Data

1K-12K sections per day, 30nnlfjickness
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Computational Neuroscience: Theory

THEORETICAL NEUROSCIENCE

Issues:

o Far from experimentalists

eter Dayan and L. E Abbott
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THEORETICAL NEUROSCIENCE

Issues:

o Far from experimentalists

o Internally divided

e Led mostly by physicists

Theories:

eter Dayan and L. E Abbott

o Neural networks for learning: Pitts &
McCulloch (’47), Rosenblatt (’58), Hubel & Wiesel (’62), ...

e Neural-dynamics model for specific neural phenomena
(associative memory, grid cells, place cells, oscillations, ...)

o Works from Theoretical Computer Science: Neuroidal Model by
Valiant (’94), models of associative memory by Papadimitriou
et al, (’15), Lynch et al. (’16) and Navlakha et al. (’17), ...
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Does the Brain use Algorithms?

How are you
aware of your
location in
space?

2014 Nobel
Prize in
Physiology to

J. O’Keefe & M.
B. and E. Moser
for discovery of
cells that
constitute a
positioning
system in the
brain

Neuron 1 Neuro_n 2
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The Principle of |

fficiency

Position (x,y)

8 X 8 =64
bits...
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The Principle of Efficiency

Position (z,y)  ®®®eeeee X8 =0(4

00000000 bits. ..

T1 To T3 6 + 6 = 12
19 bits
> | 1%
Position |. :!yg
(z = z12273, + D
Y = Y1Y2Y3) |' ° @

6/30



Grid Cells Encodes Position Efficiently

Neuron 1 Neuron 2

)
°

L ]
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Neuron 3 Neuroh 4
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Neural Pruning

Neural pruning is a fundamental phenomenon in nervous
systems. What are the algorithmic principles that guide it?

Research article 3631

Cellular mechanisms of dendrite pruning in Drosophila: insights

from in vivo time-lapse of remodeling dendritic arborizing sensory
neurons

R
i
)
=
o,
=
)
>
)
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» WIREs Developmental Biology

Darren W. Williams*t and James W. Truman
A fly’s view of neuronal
remodeling
Howard Hughes

h h m Med|Ca| InStItUte Shiri P. Yaniv and Oren Schuldiner

Published as: Annu Rev Cell Dev Biol. 2015 November 13: 31: 779-805.

Sculpting Neural Circuits by Axon and Dendrite Pruning

Martin M. Riccomagno' and Alex L. Kolodkin?
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Neural Pruning Example:
Innervation in Muscular Junctions
|Gan & Lichtman, Science ’03; Turney & Lichtman, PLOS Bio.
’12; Tapia et al., Neuron "12]:

&

A sparsification process occurs
which aims at having at least
one axon per innervation site.

Picture from Turney &
Lichtman, PLOS Bio. ’12




Outline of the rest of the talk

Definitions: Graph
Expansion

Motivation for this work
Our Results

Crash Course on
Encoding Arguments

Some Proof Ideas




Graph Expansion I

What is a good measure of connectedness for a set ot
nodes S7
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Graph Expansion I

What is a good measure of connectedness for a set ot

nodes S7?

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

Problem: big sets are better than small ones

o Attempt 2. We also divide by the sum of its

degrees vol(S) = ) g dy: 6(582/(5)5)

uesS

Problem: Very big sets have big vol(.9)

o Attempt 3. We consider the “worst” between

e(S,V—-.15)

Sand V — 5t oo e v =8

RN

I\
R
J

[
a

{
C
g

‘.

Y/
¢
[

K

P
>

>
0

'n\
LK
DN

/

N/

A% 7/

W,
]

./
\

7

L

A/
0

</
X
17/

A

(2
L1/

“a
\\!

11/30



Graph Expansion I

What is a good measure of connectedness for a set ot

nodes S7?

o Attempt 1. Number of edges going out of S:
e(S,V—-5)=[{(u,v)|lue S,veV -5}

Problem: big sets are better than small ones

o Attempt 2. We also divide by the sum of its

degrees vol(S) = ) g dy: 6(582/(5)5)

uesS

Problem: Very big sets have big vol(.9)

o Attempt 3. We consider the “worst” between

Sand V — S e(5,V—5)

RN

I\
R
J

[
a

{
C
g

‘.

Y/
¢
[

K

P
>

>
0

'n\
LK
DN

/

N/

A% 7/

W,
]

./
\

7

L

A/
0

</
X
17/

A

(2
L1/

“a
\\!

min{vol(S),vol(V—S)} — sconductance

11/30



Graph Expansion II

e(S,V—-25)
min{vol(S),vol(V—S)}

d(S) = e(féxg)S) assuming S < 3

In regular graphs is equivalent to
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Graph Expansion II

e(S,V—-25) . .
nT00l(9) 0ol (V5] 15 equivalent to

d(S) = e(fé}/(;f) assuming S < §

In regular graphs

Interpretation. In regular graphs, ¢(S) =

Pr(random walk on random node of S exits it

Graph G is e-expander if ming ¢(S) > €

Example:

In an Erés-Rényi graph G, ,,
include each edge with prob p.

For any p > 107% ™ they are good

expanders with high probability.
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Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)
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(Spectral Graph Theory)
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Expander Mixing Lemma

Expanders can be studied using linear algebra
(Spectral Graph Theory)

Lemma. For any subset S of nodes of a A-regular
eraph with 2nd-largest eigenvalue of adjecency

matrix A : g
e(S,5) < |SI(51% + 3)
Proof. N
T 1 J)1
A adjacency matrix, 15Als s(nd)ls
1s indicator vector of S, f \ f2
J all-1 matrix. 2e(5,5) — 415
=15(A—2J)1s
2nd-largest < )\Hlst _ )\‘S‘

eigenvalue >/
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Algorithm Request - Accept if Enough Space

Algorithm RAES(G, d, ¢) for each node v:

e Set d,,+ = 0 and assume connections are directed

o At the start of each round,
if (doyr < d) then
send d — d,,; requests to random neighbors

At the end of each round

if (current requests + new ones < cd) then
accept all request

else
reject all current requests

if (dyy = d) then

forget edge orientation

() 1 is missing 2 connections.
u asks to connect to w and v.

Example P
with d =5 E Eu.:‘"bfgf\. v has already cd incoming connections

and refuses u’s requests.
14/30



Mathematical Interest of the Process

Distributed construction of constant-degree expanders

Corollary of
Marcus-Spielman-Srivastava
proot’s of the
Kadison-Singer conjecture
[Ann. of Math. ’15]:

Every dense expander has a constant-degree subgraph
which is also an expander.
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Mathematical Interest of the Process

Distributed construction of constant-degree expanders

Corollary of
Marcus-Spielman-Srivastava
proot’s of the
Kadison-Singer conjecture
[Ann. of Math. ’15]:

Every dense expander has a constant-degree subgraph
which is also an expander.

But the proof is non-constructive:
How to find the low-degree sub-expander?
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Distributed-Computing Interest ot the Process

Several works propose complicated distributed
construction of expanders:

o Law and Siu [INFOCOM’03]: incremental

construction using Hamiltonian cycles
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Distributed-Computing Interest ot the Process

Several works propose complicated distributed
construction of expanders:

o Law and Siu [INFOCOM’03]: incremental

construction using Hamiltonian cycles

o Allen-Zhu et al. [SODA’16]: start with a
(2(log n)-regular graph and increase its expansion

Ue—oU u v
: —_—
we——e 2 w Z
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Bonus Motivations from CS

o Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges
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Bonus Motivations from CS

o Parallel algorithms for sparsifying a graph don’t achieve
sublogarithmic degree and assume weighted edges

e Model creation of overlay
networks in protocols such as
BitTorrent (P2P) or Bitcoin
(distributed ledgers)

e Distributed construction of constant-degree graph implies
constant-load balancing algorithm.

Previous works: almost-tight load balancing in poly time
(Berenbrink et al., SPAA’14)
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The Theorem

Theorem [Becchetti, Clementi, N., Pasquale, Trevisan. 2019.

“Finding a Bounded-Degree Expander Inside a Dense One.” |
Foreveryd > 1, 0<a <1, ¢c> é, and an-regular
graph G, w.h.p.

RAES(G,d,c) runs in O(logn) parallel rounds

with message complexity is O(n).

Moreover, if G’s 2nd-largest eigenvalue A\ of
normalized adjacency matrix is < ea?, then w.h.p.
RAES(G,d,c) creates a e-expander with degrees
between d and d(c+1).
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The Theorem

Theorem [Becchetti, Clementi, N., Pasquale, Trevisan. 2019.

“Finding a Bounded-Degree Expander Inside a Dense One.” |
Foreveryd > 1, 0<a <1, ¢c> é, and an-regular
graph G, w.h.p.

RAES(G,d,c) runs in O(logn) parallel rounds

with message complexity is O(n).

Moreover, if G’s 2nd-largest eigenvalue A\ of
normalized adjacency matrix is < ea?, then w.h.p.
RAES(G,d,c) creates a e-expander with degrees
between d and d(c+1).

Proof Technique: Encoding Argument

(omitted: message complexity using martingale theory)
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Encoding Arguments

Encoding Lemma.

If X finite set and

C': X —{0,1}* a (partial &
prefix-free) encoding of X then

Pr Cl)| <log|X| —s) <277
P (0G| < log X] - ) <
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Encoding Arguments

Encoding Lemma.

If X finite set and
C': X —{0,1}* a (partial &
prefix-free) encoding of X then

Pr Cl)| <log|X| —s) <277
P (0G| < log X] - ) <

log | X |—s
Proof. 2 g|X| < 275,

Suggested reading: P. Morin et al. Encoding
Arguments, ACM Comp. Surveys '17.
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Flip a coin n times: 0110010 - - -.

Encoding Argument |

xample

Probability of logn 4+ s consecutive

heads?
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Call B a bad substring of logn + s consecutive heads.
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Encoding Argument Example

Flip a coin n times: 0110010 - - -. &

Probability of log n 4+ s consecutive \
heads?

I .

Call B a bad substring of logn + s consecutive heads.
Consider encoding C'p for strings containing B:

index 7 of first all other bits of the string except those at
bit of B o entry ¢, 7+ 1,..., 1+ logn+s
logn bits n — (logn + s) bits

By the Encoding Lemma
Pr(|Cg(z)| <log|X|—s) =Pr(|Cp(x)| <n—s) <279
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Implementation:
For each node
v;, array of dT°
entries of log A
bits

If RAES doesn’t
terminate in

O(logn) rounds
there exist node

U1
V2

U3

v with a rejected v,

request at each
round

Encoding Arg. for Running Time

d1' slots of log A random bits

21/30



Encoding for Always-Rejected v

We encode with the following bits

e v’s identity: logn
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Encoding for Always-Rejected v

We encode with the following bits factor 2 because

) : prefix-free encoding
e v’s identity: logn

o number of v’s requests £,: 2log ¥,

e v’s accepted requests: 2logd

e position of v’s accepted requests in /,: log (%)
o destinations of accepted requests: dlog A

o destinations of rejected requests: (¢, —d)log =

Observation: at each round there are at /

most - rejecting nodes

After calculations we see that we save
20, log(ac) —logn = Q(logn)

22/30



Encoding Argument for Expansion

Implementation:

For each node %2
v;, array of dI'  v3
entries of log A

bits

We show that if
the execution
results in a
non-expander,
then it can be
represented with

ndt log A — h ’
(A(logn) bits dT slots of log A random bits

23/30



Compressing the Non-!

Encoding:
e Randomness of V — S
. Set S: log|S| + log (")

xpanding Set

(7,

“C()n

Nodes n *41prn
V-5 “US.QQ;

Nodes |

in S
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Compressing the Non-!

Encoding:
e Randomness of V — § Nodes

. Set S: log|S| + log (")

o Accepted connections:

xpanding Set

(7,

“C()n

in Ubre

V-5 OSa. g
&

Nodes |

D ves 2logly, + log (%) in S

o Accepted connections from S to

V=83 cq2log(end) +log (%))
€,: fraction of v’s accepted connections towards V' — S

24./30



Compressing the Non-Expanding Set

Encoding:

Randomness of V — §
Set S: log S| + log (7)

Nodes in

V-5
Accepted connections:
Nodes

D ves 2logly, + log (%) in S

Accepted connections from S to
V=83 cq2log(end) +log (%))

(7,

“C()n

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:

> wes(l—€)dlog((1 —0,)A) + ) g €vdlog A

connections to S connections to V' — .S (uncompressed)

0,: fraction of v’s edges

towards V — S in (G
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Set S: log S| + log (7) e

Compressing the Non-Expanding Set

Accepted connections: |
Nodes |

> ves 2logl, +log () in 5 |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (Evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:
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Encoding:

Compressing the Non-Expanding Set

(7,

“C()n

Randomness of V — S

Nodes in Un,

V-5 ©5,
Set S: log|S| + log (%) i

Accepted connections: |
Nodes |

> ves 2logl, +log () in S |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S

D ves(l — €)dlog((1 —dy)A) + > o5 evdlog A

connections to S connections to V' — S (uncompressed)

Rejected t
cjected requests 0,: fraction of v’s edges

Unused randomness towards V — S in GG
(after node’s termination)
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Compressing Accepted Connections I

To represent accepted requests from S we need

Z(l — €,)dlog((1 —9,)A) + Z €,dlog A

vES veES
1 —¢

< sdlog A — sdlog = + eds
S

— 1
where e = - > o€,
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Compressing Accepted Connections I

To represent accepted requests from S we need
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Compressing Accepted Connections I

To represent accepted requests from S we need

Z(l — €,)dlog((1 —9,)A) + Z €,dlog A

vES veES
1 —¢

< sdlog A — sdlog = + eds
S

— 1
where e = - > o€,

With simple calculations
sdlog A — (3, cs(l —€y)dlog((1 —6,)A) + >, g €vdlog A)
>d) ,es(l —e€)log 1—15@

Two cases: s < aA and aA < s < 3.

25/30



Compressing Accepted Connections II

Goal: bound d ), (1 —€,)log 1_15
Case s < aA

Use A(1 —6,) <sand (£)? > 2
hence d ), -¢(1 —€,)log 1_15,0 > —5-sdlog %
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Compressing Accepted Connections II

Goal: bound )", (1 —¢€,)log ==

Case s < aA
Use A(1 —6,) < s and (%)2 > %
hence dzves( — €y) log 1_151J > —5-sdlog =

Case A <s< 5
Rewrite —(1 —¢€)sd ) o &:—z")’s log ﬁ

use Jensen’s inequality to get (1 — ¢)sdlog }Zf;
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Compressing Accepted Connections II

Goal: bound )", (1 —¢€,)log ==

Case s < aA
Use A(1—6,) < sand (£)? > =2

hence dzves( — €y) log 1_151J > —5-sdlog =

Case aA < s < 5

Rewrite —(1 —¢€)sd ) o —(i?)’s log 5

use Jensen’s inequality to get (1 — €)sd log } :f;

To bound 1 — 0 we use the Expander Mixing Lemma:
(1-6)< 2+
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Compressing Accepted Connections II

Goal: bound )", (1 —¢€,)log ==

Case s < aA
Use A(1 —6,) < s and (%)2 > %
hence dzves( — €y) log 1_151J > —5-sdlog =

Case aA < s < 5

Rewrite —(1 —¢€)sd ) o —(i?)’s log 5

use Jensen’s inequality to get (1 — €)sd log } :f;

To bound 1 — 0 we use the Expander Mixing Lemma:
(1-6)< 2+

together with hypothesis on s and A, it implies

(1 —€)sdlog 1=5 > (1 — €)sdlog 2 — 2eds
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Encoding:

Compressing the Non-Expanding Set

(7,

“C()n

Randomness of V — S

Nodes in Un,

V-5 ©S,
Set S: log|S| + log (%) i

Accepted connections: |
Nodes |

> ves 2logl, +log () in 5 |

Accepted connections from S to |
d

V=85 cg2log(e,d) + log (Evd)

€,: fraction of v’s accepted connections towards V' — S

Destinations of connections from S:

> ves(l—€)dlog((1 —0,)A) + ) g €vdlog A

connections to S connections to V' — .S (uncompressed)

Rejected requests

Unused randomness
(after node’s termination)
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Compressing Rejected Requests (Idea)

With ¢, — d’ bits we encode which requests are rejected.

The hard part is compressing their destinations, for which
we use the following notions:

Semi-saturated nodes ss;: accepted connections until time
t — 1 + requests from V — S are > %

Critical nodes c;: not semi-saturated at time ¢ but accepted
+ rejected connections are > cd
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Compressing Rejected Requests (Idea)

With ¢, — d’ bits we encode which requests are rejected.

The hard part is compressing their destinations, for which
we use the following notions:

Semi-saturated nodes ss;: accepted connections until time
t — 1 + requests from V — S are > %

Critical nodes c;: not semi-saturated at time ¢ but accepted
+ rejected connections are > cd

Claim. semi-saturated nodes < % and critical nodes < %

We can then write
ss(v) log 22 + ZlT rcg(v) log ¢

Where rss(v) is the number of rejected connections from v
to semisaturated nodes and rc;(v) is the number of rejected
connections from v to critical nodes at time ¢
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Compression Summary

Set S
Size Index of the set L}/
00
2log S| +1 " %,
0g| | + log |S| Nodes in 5021
VS &
&(Q N
7
Critical Nodes
Nodes in

Sizes Indices of sets S

—— Node v

T n
D1 [logct + log ( e )]

Destinations of
accepted requests

ouside S (uncompressed) +

Subset of Subset of Destinations of

accepted requests accepted requests in S rejected requests

+ inside S (compressed)

2log ly + 1 (g) 2log(eud) + 1 ( d ) cvdlog At
ogly + lo og(&y 0
Bre O d & B\ eud (1= 2y)dlog (1 — 5)A)

Semi-satured / Critical S.-sat. Crit. Crit. S.-sat. S.-sat. Crit.
dest. dest. dest. dest. dest. dest.
l, —d log(n/c) log ¢, logee, log(n/c) log(n/c) logee,
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Project Idea

Simulate the RAES protocol on random A-reqular graphs,
varying the parameters A, d and c.

o Becchetti, Clementi, N., Pasquale, Trevisan. 2019. “Finding a
Bounded-Degree Expander Inside a Dense One.

Simulations should be performed using open-source software with some
effort to make them efficient (e.g. coded in Python using Numpy), and
the source code should be made publicly available (e.g. on Gitlab) and
GPL licensed.

ATTENTION: Creating a random A-regular graph is not
immediate!
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