Natural Distributed Algorithms

- Lecture 6 -
Necessary Memory for Majority in
Population Protocols

Emanuele Natale 0
CNRS - UCA UNIVERSITE
CdL in Informatica COTEDAZUR

Universita degli Studi di Roma

“Tor Vergata”
Universita di Roma

Tor Vergata

1/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Recall: k-Plurality Consensus

Each agent supports one out of £ opinions

>
>

Lafa
A %;’5

3/23

Recall: k-Plurality Consensus

All agents eventually support the same opinion

3/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

5/23

Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

e (Directed) graph G,

e set of nodes’ states
Z::(O-u)uEV7

e edges activated by a scheduler,

e function v: 2 X X — X X X s.t.
if edge (u,v) with states
(0u,0,) activated, new states
are

/7(0-’&7 Jv) — (O-fiw O-;J)

N . N .
. P . P
N . N .
*e g *e g

.
—
~
edge
R . R u ’lj .
. N . N
P *e (u , U) P *e

activated

5/23

Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

e (Directed) graph G,

o set of nodes’ states o
Z::(O-u)uEV'a

e edges activated by a scheduler,

e function v: 2 X X — X X X s.t.
if edge (u,v) with states
(0u,0,) activated, new states
are

protocol’s
memory

/7(0-’&7 J’U) — (O-fiu O',Z)

N . N .
. P . P
N . N .
*e g *e g

.
—
~
edge
R . R u ’lj .
. N . N
P *e (u , U) P *e

activated

5/23

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

6/23

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

6/23

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

A configuration is the state of all nodes S = (o1, ...,0,).

S" reachable from S if it is possible to activate
edges such that S becomes 5’.

6/23

Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

A configuration is the state of all nodes S = (o1, ...,0,).

S" reachable from S if it is possible to activate
edges such that S becomes 5’.

Fair scheduler: it S appears infinitely often, also
any cont. reachable from S appears infinitely often:

S’ reachable from S and Si,55,...,5,...,59,...,.5, ...
— 51,5,,...,5,....8",....5, ..

6/23

Self-Stabilization

n agents with states in >. >" possible configurations.

S := {“correct states of the system” }.

Convergence. Starting from any
possible configuration, the system

eventually reaches a configuration in S.
Closure. If configuration in S, it

remains in S.

A protocol is e

self-stabilizing ift
guarantees
convergence and
closure w.r.t. S.

e := configuration

7/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Majority (2-Plurality) Consensus: 2-bit Protocol
[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |

9/23

Majority (2-Plurality) Consensus: 2-bit Protocol
[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |

u\ v (9,0) (9,1) (r, 0) (?“
) - ((9,1), (9,0)) — ((r,
) | ((g,0),(g,1)) - ((9,0),(g,1)) | ((g,
; B ((931)?(970)) T ((

RENEN
R =

(9,
(g,
(7,
(7,

-%

9/23

Idea of Proof for 2-bit Protocol
[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |

10/23

Idea of Proof for 2-bit Protocol
[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |

o If there is a clear majority, at some point there is
only one type (green or red) of ”strong agent”
o At some point the strong agent visits all nodes

10/23

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

11/23

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

11/23

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

G '
x “1” -~ o4
sequence 9y 1«17
of edge
el activations
r+1 T
66177

11/23

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

G

sequence I — 1 “1”
of edge

activations
T

_—

G/

11/23

Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

Initial majority is “0”!

G

sequence I — 1 “1”
of edge

activations
T

_—

G/

11/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

13/23

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
Each node initially has a coin = its opinion

A
Uy Y
Uus| e
(V%)
Uq
>
° °

13/23

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

A A
Uy o Uy
53 o — 53
2 2
Uy Ui| e o
> >
o O O o

13/23

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

A A
U4 ® U4
53 o — 53 A
2 2 -
U1 Ul | e O
. .
O o O o

13/23

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy o Uy Coins are
ug o — ug A accumulated
U3 U1 | o ° on few nodes
- .
® ® o ®

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(v)
new coins(v) =coins(u)Ucoins(v)

13/23

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy ° U4 Coins are
u u S
ug ° — ug ¥, accumulated
U1 Ul | o ° on few nodes
> >
. ‘ . .

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(
new coins(v) =coins(u)Ucoins(v

v)| Potential function
)

>, |coins(v)|?

13/23

Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy ° U4 Coins are
u u S
ug ° — ug ¥, accumulated
U1 Ul | o ° on few nodes
> >
. ‘ . .

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(
new coins(v) =coins(u)Ucoins(v

v)| Potential function
)

>, |coins(v)|?

Conjecture. O(2%) states are necessary.

13/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

15/23

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

15/23

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

15/23

Q(k?) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

2e-x \ 12l 1 *
S22)% " config.s all nodes output c*.

In at most ~ (%

15/23

(k%) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

: =]
In at most ~ (Z&2-)& 1

There are .
~ N A N : o :
config.s of the form : with other opinions

config.s all nodes output c*.

15/23

(k%) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

[2]
In at most ~ (&2) ® !

There are .
- 1 NE—D . ey : o :
config.s of the form : with other opinions

config.s all nodes output c*.

Pigeonhole: if |X| < k* — k, 2 config.s G and G’ i;\-
converge to identical configurations.

15/23

(k%) Lower Bound II

(z—1)/2

: pairs of
L : .
k7 :nodes with
i other

: OPINIONS

(z—1)/2

/!

. : pairs of
« «» nodes with >~ 2 — 1 “c*’
¢t
' other

: OPINIONS

16/23

(k%) Lower Bound II

« I

Yy C

w—1))3
: pairs of
« v inodes with
i other
Eopinions

Wlog there is opinion ¢’ and vy s.t.
o adding y “c’” to G makes

¢ plurality in G
o adding y “c’ to G’ leaves
c* plurality in G’.

(w—1))3
: pairs of
« v inodes with
i other
Eopinions

VY — 1 “c*”

16/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

18/23

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

18/23

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not
clear who should
play at each match:
winner of previous
matches can change.

18/23

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.

w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not .
c1 may already have been competing
clear who should against c4: it cannot simply start afresh

play at each match:
C1 VS C3 C1 VS C3

winner of previous
matches can change. C1 C3 —> (1 C4
Ci C2 C3 (4 CiL Cy C3 C4
18/23

Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not c1 may already have been competing

clear who should against c4: it cannot simply start afresh

play at each match:
C1 VS C3 C1 VS C3

winner of previous
matches can change. C1 €3 —— C4
Solved if nodes

C

C1
can change opinion. €1 €2 €3 ©4 1 C2 C3 C4
18/23

Dynamic Plurality Consensus

|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

States and weights

Updating the state

S w(s) Sq, Co = 1 changes to ¢, = -1 | s,

[—2] —2 [0]9 <_1>9 <0>a <1> [_2]

—1] 1 1] —1]

. 2 0

[0]’< ﬂ§}<0>’<1> ? Sq, Co = —1 changes to ¢, =1 sh

0], (=1),(0), (1) 2]

2 : -1 1

Transitions 2 o

Sa \Sb 2] [—1] 0] 1] 2]
=2] | (=2 [=2]) (=2, [-1]) (=2}, (=1) (=1, (=1)) ([0}, [0])
-1) (=1 =2) (=1 0=1)) (=1.(=1) (oL (o) ((1), [1])
o | ((=1),[=2) (=1, [-1]) ([0],] (1, 1) (1), [2)
1] | (=0, [=1) ([0}, [0]) (1), ((1], [1]) ([1];[2])
2] (0], [0]) (1], (1)) (12, ¢ (21,01 (2,[2])
weak | ((=1),[-2])) ({(-1),[-1]) ({0),[0] (1, [1) (1),[2])

19/23

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

19/23

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

19/23

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

19/23

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

19/23

Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

Balance ot opinions
equals
balance of soldiers

19/23

Outline

Problem: k-Plurality Consensus
Model: Population Protocols

Simple case: Majority Consensus
Previous Work: Q(2%) Conjecture
Q(k*) Lower Bound

Previous Work: O(k°®) Almost Refutation
O(k'!) Upper Bound

O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

21/23

O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

Idea. Have agents arrange opinions in a linked list.

Problem. Multiple lists can *
appears. How to delete/merge lists? i o

21/23

O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

Idea. Have agents arrange opinions in a linked list.

Problem. Multiple lists can *
appears. How to delete/merge lists? i o

Ideas. Start deleting from roots of lists and append
elements by travelling from root to last item.

u will v u starts by
i .* inform o * designating v as
Ui """" P parent that parent. Eventually u
list shall be designates as parents
deleted. v’s child, and so on.

21/23

Conclusions & Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

22/23

Conclusions & Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

(Ordered) plurality consensus in
population protocols with fair
scheduler can be solved using O(k°)
states per agent.

22/23

Conclusions & Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

(Ordered) plurality consensus in
population protocols with fair
scheduler can be solved using O(k°)
states per agent.

What is the space complexity of
plurality consensus in population
protocols with fair scheduler?

22/23

Project Idea

Simulate the DMVR and Dynamics Majority algorithms on
Erdos-Rényi graphs with parameter p, varying the parameter.

o Salehkaleybar, S., A. Sharif-Nassab, and S.J. Golestani. 2015.
“Distributed Voting/Ranking with Optimal Number of States per
Node.” IEEE Transactions on Signal and Information Processing
over Networks PP (99): 1-1.
https://doi.org/10.1109/TSIPN.2015.2477777.

o Gasieniec, Leszek, David Hamilton, Russell Martin, Paul G.
Spirakis, and Grzegorz Stachowiak. 2017. “Deterministic
Population Protocols for Exact Majority and Plurality.” In 20th
International Conference on Principles of Distributed Systems
(OPODIS 2016), 70:14:1-14:14. Leibniz International Proceedings
in Informatics (LIPIcs).
https://doi.org/10.4230 /LIPIcs.OPODIS.2016.14.

Simulations should be performed using open-source software with some effort
to make them efficient (e.g. coded in Python using Numpy), and the source
code should be made publicly available (e.g. on Gitlab) and GPL licensed.

23/23

	Find Your Place\\
Simple Distributed Algorithms for Community Detection
	Outline
	\textcolor{red}{Recall:} k-Plurality Consensus
	Population Protocols
	Population Protocols: Schedulers
	Self-Stabilization
	Majority (2-Plurality) Consensus: 2-bit Protocol
	Idea of Proof for 2-bit Protocol
	Majority Consensus: 2-bit Lower Bound
	Salehkaleybar et al.'s Conjecture [TSIPN'15]
	$\Omega(k^2)$ Lower Bound I
	$\Omega(k^2)$ Lower Bound II
	Plurality Consensus via Tournament Tree
	Dynamic Plurality Consensus
	$O(k^{11})$ Upper Bound (Refunting Conjecture)
	Conclusions \& Open Problem
	Project Idea

