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Recall: k-Plurality Consensus

Each agent supports one out of £ opinions
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Recall: k-Plurality Consensus

All agents eventually support the same opinion
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AKA chemical reaction networks, poisson clock models, etc.

e (Directed) graph G,

e set of nodes’ states
Z::(O-u)uEV7

e edges activated by a scheduler,

e function v: 2 X X — X X X s.t.
if edge (u,v) with states
(0u,0,) activated, new states
are

/7(0-’&7 Jv) — (O-fiw O-;J)

N . N .
. P . P
N . N .
*e g *e g

.
—
~
edge
R . R u ’lj .
. N . N
P *e (u , U ) P *e

activated

5/23



Population Protocols

AKA chemical reaction networks, poisson clock models, etc.

e (Directed) graph G,

o set of nodes’ states o
Z::(O-u)uEV'a

e edges activated by a scheduler,

e function v: 2 X X — X X X s.t.
if edge (u,v) with states
(0u,0,) activated, new states
are

protocol’s
memory

/7(0-’&7 J’U) — (O-fiu O',Z)

N . N .
. P . P
N . N .
*e g *e g

.
—
~
edge
R . R u ’lj .
. N . N
P *e (u , U ) P *e

activated

5/23



Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

6/23



Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

6/23



Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

A configuration is the state of all nodes S = (o1, ...,0,).

S" reachable from S if it is possible to activate
edges such that S becomes 5’.

6/23



Population Protocols: Schedulers

& 0 g0
Probabilistic scheduler: O “ e O ®
activate an edge chosen ® AL e O
at random OO‘ ® ‘Q ®

What if a protocol P should never fail?

A configuration is the state of all nodes S = (o1, ...,0,).

S" reachable from S if it is possible to activate
edges such that S becomes 5’.

Fair scheduler: it S appears infinitely often, also
any cont. reachable from S appears infinitely often:

S’ reachable from S and Si,55,...,5,...,59,...,.5, ...
— 51,5,,...,5,....8",....5, ..
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Self-Stabilization

n agents with states in >. >" possible configurations.

S := {“correct states of the system” }.

Convergence. Starting from any
possible configuration, the system

eventually reaches a configuration in S.
Closure. If configuration in S, it

remains in S.

A protocol is e

self-stabilizing ift
guarantees
convergence and
closure w.r.t. S.

e := configuration
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[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |
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Idea of Proof for 2-bit Protocol
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Idea of Proof for 2-bit Protocol
[Mertzios et al. ICALP’16,

State: (green/red, defended or not) Benezit et al. ICASSP’09 |

o If there is a clear majority, at some point there is
only one type (green or red) of ”strong agent”
o At some point the strong agent visits all nodes
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Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.
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Majority Consensus: 2-bit Lower Bound
[Mertzios et al. I[CALP’16 |

Three possible states: 1,0, c.

Observe: « counts either as “output 1”7 or “output 0.
Wlog assume o counts as “output 0.

Initial majority is “0”!

G

sequence I — 1 “1”
of edge

activations
T

_—

G/
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Problem. Plurality consensus in population
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Protocol DMVR.
Each node initially has a coin = its opinion
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Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy o Uy Coins are
ug o — ug A accumulated
U3 U1 | o ° on few nodes
- .
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13/23



Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy ° U4 Coins are
u u S
ug ° — ug ¥, accumulated
U1 Ul | o ° on few nodes
> >
. ‘ . .

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(
new coins(v) =coins(u)Ucoins(v

v)| Potential function
)

>, |coins(v)|?

13/23



Salehkaleybar et al’s Conjecture [TSIPN’15]

Problem. Plurality consensus in population
protocols with fair scheduler.
Opinions can only be tested for equality.

Protocol DMVR.
e Each node initially has a coin = its opinion

Uy ° U4 Coins are
u u S
ug ° — ug ¥, accumulated
U1 Ul | o ° on few nodes
> >
. ‘ . .

o« When (u,v) interact:
new coins(u) =coins(u)Ncoins(
new coins(v) =coins(u)Ucoins(v

v)| Potential function
)

>, |coins(v)|?

Conjecture. O(2%) states are necessary.
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(k%) Lower Bound I

k colors, X states.
Protocol P eventually reaches plurality consensus.

There is output function
® ¥ — (“i is plurality”);cq1,.. i

— there is a color ¢* s.t. {o: ®(0) =c*}| < X/k

[ 2]
In at most ~ (&2 ) ® !

There are .
- 1 NE—D . ey : o :
config.s of the form : with other opinions

config.s all nodes output c*.

Pigeonhole: if |X| < k* — k, 2 config.s G and G’ i;\-
converge to identical configurations.
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(k%) Lower Bound II

(z—1)/2

: pairs of
L : .
k7 :nodes with
i other

: OPINIONS

(z—1)/2

/!

. : pairs of
« «» nodes with >~ 2 — 1 “c*’
¢t
' other

: OPINIONS
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(k%) Lower Bound II

« I

Yy C

w—1))3
: pairs of
« v inodes with
i other
Eopinions

Wlog there is opinion ¢’ and vy s.t.
o adding y “c’” to G makes

¢ plurality in G
o adding y “c’ to G’ leaves
c* plurality in G’.

(w—1))3
: pairs of
« v inodes with
i other
Eopinions

VY — 1 “c*”
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Idea. Compute plurality by majority tournament.

w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not .
c1 may already have been competing
clear who should against c4: it cannot simply start afresh

play at each match:
C1 VS C3 C1 VS C3

winner of previous
matches can change. C1 C3 —> (1 C4
Ci C2 C3 (4 CiL Cy C3 C4
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Plurality Consensus via Tournament Tree

Idea. Compute plurality by majority tournament.
w1 VS W9

W1 = C1 VS C9 Wo — C3 VS C4

Requires agreement on the leaves/labels.

Problem. Not c1 may already have been competing

clear who should against c4: it cannot simply start afresh

play at each match:
C1 VS C3 C1 VS C3

winner of previous
matches can change. C1 €3 —— C4
Solved if nodes

C

C1
can change opinion. €1 €2 €3 ©4 1 C2 C3 C4
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Dynamic Plurality Consensus

|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

States and weights

Updating the state

S w(s) Sq, Co = 1 changes to ¢, = -1 | s,

[—2] —2 [0]9 <_1>9 <0>a <1> [_2]

—1] 1 1] —1]

. 2 0

[0]’< ﬂ§}<0>’<1> ? Sq, Co = —1 changes to ¢, =1 sh

0], (=1),(0), (1) 2]

2 : -1 1

Transitions 2 o

Sa \Sb 2] [—1] 0] 1] 2]
=2] | (=2 [=2]) (=2, [-1]) (=2}, (=1) (=1, (=1)) ([0}, [0])
-1 ) (=1 =2) (=1 0=1)) (=1.(=1) (oL (o) ((1), [1])
o | ((=1),[=2) (=1, [-1])  ([0],] (1, 1) (1), [2)
1] | (=0, [=1) ([0}, [0]) (1), ((1], [1]) ([1];[2])
2] (0], [0]) (1], (1)) (12, ¢ (21,01 (2,[2])
weak | ((=1),[-2])) ({(-1),[-1])  ({0),[0] (1, [1)  (1),[2])
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Dynamic Plurality Consensus
|Gasieniec et al. OPODIS’16]

Nodes can change opinion during execution.

Nodes changing opinion
generate two soldiers of
the new opinion.

Balance ot opinions
equals
balance of soldiers

19/23
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O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.
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O(k'') Upper Bound (Refunting Conjecture)

To retute Salehkeleybar’s conjecture we provide a
protocol that creates a labeling and can run n
parallel with Gasieniec et al.’s.

Idea. Have agents arrange opinions in a linked list.

Problem. Multiple lists can *
appears. How to delete/merge lists? i o

Ideas. Start deleting from roots of lists and append
elements by travelling from root to last item.

u will v u starts by
i .* inform o * designating v as
Ui """" P parent that parent. Eventually u
list shall be designates as parents
deleted. v’s child, and so on.
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Conclusions & Open Problem

Non-ordered self-stabilizing plurality consensus in
population protocols with fair scheduler can be
solved using O(k!!) states per agent.

Q) (k?*) states per agent are necessary.

(Ordered) plurality consensus in
population protocols with fair
scheduler can be solved using O(k°)
states per agent.

What is the space complexity of
plurality consensus in population
protocols with fair scheduler?
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Project Idea

Simulate the DMVR and Dynamics Majority algorithms on
Erdos-Rényi graphs with parameter p, varying the parameter.

o Salehkaleybar, S., A. Sharif-Nassab, and S.J. Golestani. 2015.
“Distributed Voting/Ranking with Optimal Number of States per
Node.” IEEE Transactions on Signal and Information Processing
over Networks PP (99): 1-1.
https://doi.org/10.1109/TSIPN.2015.2477777.

o Gasieniec, Leszek, David Hamilton, Russell Martin, Paul G.
Spirakis, and Grzegorz Stachowiak. 2017. “Deterministic
Population Protocols for Exact Majority and Plurality.” In 20th
International Conference on Principles of Distributed Systems
(OPODIS 2016), 70:14:1-14:14. Leibniz International Proceedings
in Informatics (LIPIcs).
https://doi.org/10.4230 /LIPIcs.OPODIS.2016.14.

Simulations should be performed using open-source software with some effort
to make them efficient (e.g. coded in Python using Numpy), and the source
code should be made publicly available (e.g. on Gitlab) and GPL licensed.
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