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Ants are symbol of Biological Distributed Algorithm

Lots of work going on:

o T. Radeva, “A Symbiotic Perspective on Distributed
Algorithms and Social Insects,” PhD Thesis, MIT, 2017.

o A. Cornejo, A. Dornhaus, N. Lynch, and R. Nagpal, “Task
Allocation in Ant Colonies,” in Distributed Computing,
Springer, 2014, pp. 46—60.

o Y. Afek, R. Kecher, and M. Sulamy, “Faster task allocation
by idle ants,” arXiv:1506.07118 [cs], Jun. 2015.

e Y. Emek, T. Langner, D. Stolz, J. Uitto, and R.
Wattenhofer, “How Many Ants Does It Take to Find the
Food?,” in SIROCCO, Springer , 2014, pp. 263—278.

e O. Feinerman and A. Korman, “The ANTS problem,”
Distrib. Comput., pp. 1-20, Oct. 2016.

o L. Boczkowski, O. Feinerman, A. Korman, and E. Natale,

“Limits of Rumor Spreading in Stochastic Populations,”
in I'TCS, 2018.
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Today we talk about

e C. Musco, H.-H. Su, and N. Lynch, “Ant-Inspired Density Estimation via
Random Walks: Extended Abstract,” In PODC 2016, pp. 469-478.

o C. Musco, H.-H. Su, and N. A. Lynch, “Ant-inspired density estimation via
random walks,” In PNAS, vol. 114, no. 40, pp. 10534-10541, Oct. 2017.
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Density estimation in ants: quorum sensing
during hause hunting (temnothoraz), appraisal of
enemy colony strength (azteca), task allocation.
How they do it?

They estimate frequency of encounters:
higher density = higher bumping!

Applications: Size estimation for

social networks, random-walk based
sampling for sensor networks, density

estimation for robot swarms.

A graph (say a grid) of
size VA X \/Z, n ants.

Each ant wants to learn
the density d = n/A.

It’s getting
crowded in
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Model Definition

Underlying graph G (2-D torus).

Each of the n ants is initially placed on a
random node, independently from others. -
Discrete parallel time.

At each round, each ant moves to a
neighboring node chosen uniformaly at
random (simple random walk).

Fix an ant v. The only interaction of v with other ants at time ¢
is that v can count how many ants ¢(¢) are on her node.

The estimator of ant v after T steps is d = - Zthl c(t).

~ ~

What is E[d] ? Lemma. E[d] = d.

Goal. If t > O(?) then Pr(|d — d| > ed) < 6.

The mathematical challenge: after two ants meet, they are more

_ >

T l l are not
j{{_. ._}}t TN ‘~><—}}& independent!

likely to meet again. c(t') and ()
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Recall on of Concentration Inequalities

A mathematician tosses n coins: @%

“The outcome is Binomial(n, 1/2).” lri\

A computer scientist tosses n coins: ’

p
“The outcome is 5 & +/nlogn with high probability.” (

Markov inequality. X nonnegative r.v., then Pr(X > t) < E[X]/t.

For any non-decreasing function 1,

Pr(X >1t) = Pr(y(X) > (1) < E[p(X)]/4().
X + |X —EX]| and ¢(z) = 2° = Chebyshev inequality.

X + > . X; indip. and ¢(X) = e~ ** = Chernoff bounds.
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Warm-up: Complete Graph

At each round each ants position is i.u.a.r.

— ¢(t') and ¢(t") are independent!

Chernoff bound. Let X;,..., Xy be %

independent 0-1 random variables with
Pr(X; = 1) = p, then for any € € (0, 1),

Pr(| > . X; — Np| > eNp) < 2e=5 NP,

Cj (t) =1
Let c(t) = ) 4, ¢;(t) where ¢;(t) =1 ]@_Q

iff ant 7 is on v’s node at time t.

v

N =tn, X;, =cj(r), p=1/A, hence
62

Pr(ld—d| >ed) <2~ T <§ = |t = 3log 2 /(de?)|




Main Result

Algorithm 1. Encounter Rate-Based Density Estimator

input: number of time steps T’
c:=0
forr=1,...,t do
position = position + rand{(0,1), (0,—1),(1,0),(—1,0)}
c := c+count(position)
end for

J_ ¢
return d = T

Theorem. After running for 7 rounds, 7' < A, Algorithm 1 returns d
such that, for any § > 0, with prob 1 — 4, dd € [(1 — €)d, (1 + €)d| for

= \/log s o8 1 other words, for any €,0 € (0,1), if

T = @(log S logclizg 5198 2 ), d is a (1 % €) multiplicative estimate of d

with probability 1 — 9.
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General Chernoff bound (Chung-Lu). Let X5, ..., X,, be
independent and X; < M for all 7, then

Pr (Z X, >FE (Z X,L) + A) < 6_2(239(??)+MA/3) _

7 7

Proof.
P(Y, Xi — S EX; > A) < Eet 22 % /ed

B2 Xi [1, Ee .

00 k—2 e¥y _1—
Let g(y) =22 0 5 = 2 yzl ¥,

It holds ¢(0) =1, g(y) <1 for y < 0 and ¢(y) is increasing for y > 0.

Since k! > 2382 g(y) =232, 92—72 <>, g:—:i = L, for y < 3.

=



A General Chernoff bound

We have

(A X) = [T () H]E(Z)\ X’“)

k=0

=][E (1 +AX; + 5AZXEg ()\Xi)>

1
< H (1 + A\E (X;) + 5%1@ (X7) g (AM))
< H AE(X;)+ 2 AE(X7)g(AM)

_ E(E, )0 Y, ()

Hence, for A\ satisfying AM < 3, we have...
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A General Chernoff bound

br <ZX > E <ZX> +A>
— Pr (eAX > AE(2, Xi>+>\A)

AE() X )+3iXNg(AM) Y | E(X?
< (D XN () e S A T LD

< e MATENGOM) ) E(X)

2 E(Xﬂ\‘ (AM) < —1

< 6—AA+%>\2 sy vgcal g s
Choosing A = ZiE(X%-i—MA/B’ we have AM < 3 and
2, (x?)
Pr (Z X; > E (Z Xz) 4+ A) < e_AA_F%)‘Z T—AM/3
1 7 Az

<e 2(231 E(X?)+MA/3) =
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Proot Ingredients of Theorem 1

Re-collision Lemma. Consider two agents a1 and as randomly
walking on a VA x VA torus. If a; and ay collide at time t, the prob.
that they collide again in round m + ¢ is O(#ﬂ) +O(%).

First-collision Lemma. Assuming t < A, for all j € [1, ..., n],
PI‘[Cj Z 1] = @(Alf)gt)'
Collision Moment Lemma. For j € [1,...,n], let ¢, = c; — El¢;].

For all £ > 2, assuming t < A, |]E[E§”]| = O(%k! log" 1 ¢).
Bernstein Inequality. If |E[c}]| < 2 klo?bP~2 for each k > 2, then

t2
Pr(z X; — ZEXi >t) <e 207+bt),

Remark. Proofs can be revisited to estimate probability that single
random walk return on a given node (equalization).
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Re-collision Lemma. Consider two agents a1 and as randomly
walking on a VA x VA torus. If a; and ay collide at time t, the prob.
that they collide again in round m + ¢ is O(#ﬂ) +O(%).

Two random walkers, a; and as.

Let M, and M, be the steps on = and y direction (M, + M, = 2m).
Let C =“they re-collide after ¢ steps”, and C;, and C,, the event that
they end with same x, and y.

Pr(C| M, = my, M, =m,) = Pr(Cy | My = m,)Pr(C, | M, = m,).

Wilog, we look at C,.
Let C! and C? be the events “same z without displacement” and “same

x with displacement” (displacement=wrapping around torus), so
Pr(C, | M, = m,) = Pr(Cl| M, = m,) + Pr(C?| M, = m,).

The first summand means that the random walk comes back to the

origin: Pr(Cl| M, = m,) = (mTZ%)(%)mw = ((m?fé)!)Q (3)7.

1/6



Prootf of Re-collision Lemma

Assuming m,, even and using Stirling n! = v2rn(2)"(1 + O(+)), we
get Pr(CL| M, = m,) = ©(1/v/my + 1).
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Prootf of Re-collision Lemma

Assuming m,, even and using Stirling n! = v2rn(2)"(1 + O(+)), we
get Pr(CL| M, = m,) = ©(1/v/my + 1).

" [ =] M
As for C2, Pr(C2| M, =my) = 2(3)™= > .2 ((mx—C\/Z)/2)'

For i€ [1,...,vVA—1],
let D! =“the walk is i steps clockwise from start after m, steps”. It
holds

. 1\ Y My
e N
1 My —1 m, 1 My LTEZJ m,
=() 2 (efea) - () X (aile)
' c=1




Prootf of Re-collision Lemma

For any i € [1,...,v/A — 1], and any ¢ > 1, mmHQ_C\/Z is closer to 5=

than %_TC\/Z is, so
My My
(mm—ki—C\/Z) > (mm—cﬂ)
2 2
as long as mm“{ VA is an integer. This allows us to lower bound

Pr[D!|M, = m,] using Pr [C§|Mx = mx} Let &; . equal 1 if me’HQ_C\/Z
is an integer and 0 otherwise. Since C2 and each D! are disjoint events:

VA1
Pr[C2|M, =mg| + Y Pr[DL|M, =m,] <1
i=1
1 My VA-1 Lm_\/%J m
Pr [Ci\Mw = mw} + (5) ' Z Z (mm—l—i—xC\/Z) <1
i=1 c=1 2

3/6



Prootf of Re-collision Lemma

3

My
mw—|—z'—C\/Z S 1
2

2 .
1=1 c=1
1l
1 My Lm—\/%J m VA-1
c=1 2 1=1

Pr [CZ| M, = m,] .O(VA) <1.

The last step follows from combining the last with the fact that
Z;/:Zl_l Eic=0 (\/Z) for all ¢ since m“’“{ VA g integral for half the
possible i € [1,...,v/A — 1]. Rearranging, we have

Pr(C2|M, =m.] =0 ().

4/6



Prootf of Re-collision Lemma

Combining our bounds for C! and C2,
Pr[Cy| M, = m,] = © (Wjiﬂ) i) (ﬁ) .
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Prootf of Re-collision Lemma

Combining our bounds for C! and C2,
Pr[Co| M, = m,] = © (Wji“) i) (ﬁ) .

Identical bounds hold for the y direction and by saparating
horizantal /vertical axis we have:

1
Pr|C|My = mg, M, =m,| =0
¢ | <\/(mx—l—1)(my—|—1)>

1 1 1
o (\/A(mx+1) ’ %A(my+1)> e (Z)

5/6



Prootf of Re-collision Lemma

Our final step is to remove the conditioning on M, and M, . Since
direction is chosen independently and uniformly at random for each

step, E [M], = E[M], = m. By a standard Chernoff bound:

2 1
Pr[M, <m/2] < 2e~1/27m/2 = O (—) .
m + 1

(using m + 1 instead of m to cover the m = 0 case).

An identical bound holds for M, and so, except with probability
0, (ﬁ) both are > m/2. We get:

=0 <m;+1) o (m(;ﬂ)) o (%)

6/6



Proot of First Collision Lemma

First-collision Lemma. Assuming t < A, for all j € [1,...,n],

PI’[CJ' Z ].] = @(ﬁgt)

Using the fact that c; is identically distributed for all j,

1
E[d] —
Tt

Zc@ | = Elg) = 7 - Prle; > 1] - Elesle; > 1,

that is

I
Q.
|

-Pric; > 1] - Elcj|c; > 1].

|3
|3



Proot of First Collision Lemma

First-collision Lemma. Assuming t < A, for all j € [1,...,n],

PI’[CJ' Z ].] = @(ﬁgt)

Using the fact that c; is identically distributed for all j,

Eld)=d = Zc@ | = 2 Ele) = 7 Prie; > 1]-Elesle; > 1),
that is " "
1 =d = ?-Pr[cj > 1] - Elcjlc; > 1.
Rearranging gives:
Prle; 2 1) = sy
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Proot of First Collision Lemma

To compute E|c;|c; > 1], we use Re-collision Lemma and linearity of
expectation. Since t < A, the O (%) term in Re-collision Lemma is

absorbed into the © < +1> Let » <t be the first round that the

two agents collide. We have:

Elc;le; > 1] Z@(mH) — O (log(t — 1)) .

m=0
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Proot of First Collision Lemma

To compute E|c;|c; > 1], we use Re-collision Lemma and linearity of
expectation. Since t < A, the O (%) term in Re-collision Lemma is

absorbed into the © <#+1> Let » <t be the first round that the

two agents collide. We have:

o After any round the agents are located at uniformly and
independently chosen positions, so collide with probability exactly
1/A.

e The probability that the first collision between the agents happens in
a given round can only decrease as we consider a round later in time.

o At least 1/2 of the time that c¢; > 1, there is a collision in the first
t/2 rounds.

Thanks to the previous calculations,
Elcjle; > 1] = O (log(t —t/2)) = © (logt), hence

Pr(c; > 1]

© (ﬁ(}glf/), completing the proof. [ 2/2



Prootf of Collision Moment Lemma,

Collision Moment Lemma. For j € [1,...,n], let ¢; et c; — Ec;.

For all k > 2, assuming t < A, E[¢7] = O(4k! log" 1 t).

We expand E[¢] = Prlc; > 1] - E[¢f|c; > 1] 4 Prc; = 0] - E[¢¥|c; = 0],
and so by First Collision Lemma:

_ t _ _
E [cﬂ =0 (Alogt K [cﬂcj > 1] +E [c;‘f\cj = O}) .
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Prootf of Collision Moment Lemma,

Collision Moment Lemma. For j € [1,...,n], let ¢; et c; — Ec;.

For all k > 2, assuming t < A, E[¢7] = O(4k! log" 1 t).

We expand E[¢] = Prlc; > 1] - E[¢f|c; > 1] 4 Prc; = 0] - E[¢¥|c; = 0],
and so by First Collision Lemma:

_ t _ _
E [cﬂ =0 (Alogt K [cﬂcj > 1] +E [c;?\cj = O}) .

E[¢¥|c; = 0] = (Ecj)k = (t/A)F < %k!logk_l t for all £ > 2.
Moreover E [Eﬂcj > 1] <K [c?]cj > 1}, since Ec; = % < 1.

To prove the lemma, it just remains to show that
E [chle; > 1] = O (k!log"t).
1/4



Prootf of Collision Moment Lemma,

Conditioning on c¢; > 1, we know the agents have an initial collision in
some round ¢’ < t. We split ¢; over rounds:

c;=>"_, ci(r) < ijjﬁ_l c;(r). To simplify notation we relabel
round t’ round 1 and so round ¢’ + ¢ — 1 becomes round ¢. Expanding

c® out fully using the summation:

E [c?] =K Z Z Z cj(r1)c;(re)...cj(rg)

7"1:1 ?“2:1 Tk:1

— Z Z Z E[cj(r1)cj(r2)...cj(rk)] -

7“1:1 =1 Tk;:l

<
\V)
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Prootf of Collision Moment Lemma,

Elcr, (7)cry(7)---cr, (7)] is just the probability that the two agents
collide in each of rounds r{, 79, ...r,. Assume w.l.o.g. that
r1 <19 < ... <71r. By Re-collision Lemma this is:

71 (7"2—7"1—|—1)(?"3—7‘2—|—1)...(7"k—Tk_1—|—1)
of expectation:

°l : t :
1= 3 3 o(m i n n  em )

7“1:1 T2=T7T1 TL=TkL—1

O ( 1 > . So we can rewrite, by linearity
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Prootf of Collision Moment Lemma,

The k! comes from the fact that in this sum we only have ordered
k-tuples and so need to multiple by k! to account for the fact that the
original sum is over unordered k-tuples. We can bound:

t

1 1 1
=14+ —-—+..4+—=0(logt
Z Tk — Tk—1 + 1 +2+ Jrt (log?)

Te=Tkr—1

so rearranging the sum and simplifying gives:

r1=1 1 ro=r1+1 re=rr_1+1 Tk = Tk—1
t t t
1 1 1
= k! E — Z Z - O(logt).
T “— 19 —11+1 — Yo —TE—1 + 1
ri=1 ro=T1 Th—1=Tk—2
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Prootf of Collision Moment Lemma,

The k! comes from the fact that in this sum we only have ordered
k-tuples and so need to multiple by k! to account for the fact that the
original sum is over unordered k-tuples. We can bound:

t

1 1 1
=14+ —-—+..4+—=0(logt
Z Tk — Tk—1 + 1 +2+ Jrt (log?)

Te=Tkr—1

so rearranging the sum and simplifying gives:

t
1 1 1

= k! — -O(logt).
r ng—rl—l—l Z Tk—o — Tk—1 + 1 (log )

ri=1 To=T1 Th—1=Tk—2

We repeat this simplification for each level of summation replacing
S 1 with O(logt). Iterating through the k levels gives

ri=Ti—1 1;—Ti—1+1

E[cf] = O(k! log" t) giving the lemma. O 4/4
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