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Each ant wants to learn
the density d = n/A.

Density estimation in ants: quorum sensing
during hause hunting (temnothorax), appraisal of
enemy colony strength (azteca), task allocation.
How they do it?
They estimate frequency of encounters:
higher density =⇒ higher bumping!
Applications: Size estimation for
social networks, random-walk based
sampling for sensor networks, density
estimation for robot swarms.

It’s getting
crowded in

here!
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• Underlying graph G (2-D torus).

What is E[d̃] ?

Goal. If t ≥ Θ(?) then Pr(|d̃− d| > εd) ≤ δ.

The mathematical challenge: after two ants meet, they are more
likely to meet again. c(t′) and c(t′′)

are not
independent!
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Recall on of Concentration Inequalities

A mathematician tosses n coins:
“The outcome is Binomial(n, 1/2).”

A computer scientist tosses n coins:
“The outcome is n

2 ±
√
n logn with high probability.”

Markov inequality. X nonnegative r.v., then Pr(X ≥ t) ≤ E[X]/t.

For any non-decreasing function ψ,
Pr(X ≥ t) = Pr(ψ(X) ≥ ψ(t)) ≤ E[ψ(X)]/ψ(t).

X ← |X − EX| and ψ(x) = x2 =⇒ Chebyshev inequality.

X ←
∑
iXi indip. and ψ(X) = e−λX =⇒ Chernoff bounds.
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=⇒ c(t′) and c(t′′) are independent!

At each round each ants position is i.u.a.r.

Chernoff bound. Let X1, . . . , XN be
independent 0-1 random variables with
Pr(Xi = 1) = p, then for any ε ∈ (0, 1),
Pr(|

∑
iXi −Np| > εNp) ≤ 2e− ε

2
3 Np.

N = tn, Xj,r = cj(r), p = 1/A, hence
Pr(|d̃− d| > εd) ≤ 2e− ε

2
3 td ≤ δ =⇒ t = 3 log 2

δ /(dε2).
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iff ant j is on v’s node at time t.
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Main Result

Theorem. After running for T rounds, T ≤ A, Algorithm 1 returns d̃
such that, for any δ > 0, with prob 1− δ, δd ∈ [(1− ε)d, (1 + ε)d] for
ε =

√
log 1

δ logT
Td . In other words, for any ε, δ ∈ (0, 1), if

T = Θ( log 1
δ log log 1

δ log 1
dε

dε2 ), d̃ is a (1± ε) multiplicative estimate of d
with probability 1− δ.

Algorithm 1. Encounter Rate-Based Density Estimator

input: number of time steps T
c := 0
for r = 1, ..., t do
position = position + rand{(0, 1), (0,−1), (1, 0), (−1, 0)}
c := c+count(position)
end for
return d̃ = c

T
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Re-collision Lemma. Consider two agents a1 and a2 randomly
walking on a

√
A×
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A torus. If a1 and a2 collide at time t, the prob.

that they collide again in round m+ t is O( 1
m+1 ) +O( 1

A ).

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − E[cj ].

For all k ≥ 2, assuming t ≤ A, |E[c̄kj ]| = O( tAk! logk−1 t).

Remark. Proofs can be revisited to estimate probability that single
random walk return on a given node (equalization).
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x with displacement” (displacement=wrapping around torus), so
Pr(Cx |Mx = mx) = Pr(C1

x |Mx = mx) + Pr(C2
x |Mx = mx).

The first summand means that the random walk comes back to the
origin: Pr(C1
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(
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mx/2

)
( 1

2 )mx = mx!
((mx/2)!)2 ( 1

2 )mx .
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m+1 ) +O( 1

A ).
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Proof of Re-collision Lemma

Assuming mx even and using Stirling n! =
√

2πn(ne )n(1 +O( 1
n )), we

get Pr(C1
x |Mx = mx) = Θ(1/

√
mx + 1).
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√

2πn(ne )n(1 +O( 1
n )), we

get Pr(C1
x |Mx = mx) = Θ(1/

√
mx + 1).

As for C2
x, Pr(C2

x |Mx = mx) = 2( 1
2 )mx

∑bmx√
A
c

c=1
( mx

(mx−c
√
A)/2

)
.
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Proof of Re-collision Lemma

Assuming mx even and using Stirling n! =
√

2πn(ne )n(1 +O( 1
n )), we

get Pr(C1
x |Mx = mx) = Θ(1/

√
mx + 1).

As for C2
x, Pr(C2

x |Mx = mx) = 2( 1
2 )mx

∑bmx√
A
c

c=1
( mx

(mx−c
√
A)/2

)
.

For i ∈ [1, ...,
√
A− 1],

let Dix =“the walk is i steps clockwise from start after mx steps”. It
holds

Pr[Dix|Mx = mx] =
(

1
2

)mx
·

⌊
mx−i√

A

⌋∑
c=−

⌊
mx+i√

A

⌋
(

mx

mx+i+c
√
A

2

)

≥
(

1
2

)mx
·

−1∑
c=−

⌊
mx+i√

A

⌋
(

mx

mx+i+c
√
A

2

)
=
(

1
2

)mx
·

⌊
mx√
A

⌋∑
c=1

(
mx

mx+i−c
√
A

2

)
.
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Proof of Re-collision Lemma

For any i ∈ [1, ...,
√
A− 1], and any c ≥ 1, mx+i−c

√
A

2 is closer to mx
2

than mx−c
√
A

2 is, so (
mx

mx+i−c
√
A

2

)
>

(
mx

mx−c
√
A

2

)

as long as mx+i−c
√
A

2 is an integer. This allows us to lower bound
Pr[Dix|Mx = mx] using Pr

[
C2
x|Mx = mx

]
. Let Ei,c equal 1 if mx+i−c

√
A

2
is an integer and 0 otherwise. Since C2

x and each Dix are disjoint events:

Pr
[
C2
x|Mx = mx

]
+

√
A−1∑
i=1

Pr
[
Dix|Mx = mx

]
≤ 1

Pr
[
C2
x|Mx = mx

]
+
(

1
2

)mx
·

√
A−1∑
i=1


⌊
mx√
A

⌋∑
c=1

(
mx

mx+i−c
√
A

2

) ≤ 1
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Proof of Re-collision Lemma

Pr
[
C2
x|Mx = mx

]
+
(

1
2

)mx
·

⌊
mx√
A

⌋∑
c=1

( mx

mx−c
√
A

2

)
·

√
A−1∑
i=1
Ei,c

 ≤ 1

Pr
[
C2
x|Mx = mx

]
·Θ(
√
A) ≤ 1.

The last step follows from combining the last with the fact that∑√A−1
i=1 Ei,c = Θ

(√
A
)

for all c since mx+i−c
√
A

2 is integral for half the
possible i ∈ [1, ...,

√
A− 1]. Rearranging, we have

Pr
[
C2
x|Mx = mx

]
= O

(
1√
A

)
.

Pr
[
C2
x|Mx = mx

]
+
(

1
2

)mx
·

√
A−1∑
i=1


⌊
mx√
A

⌋∑
c=1

(
mx

mx+i−c
√
A

2

) ≤ 1
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Proof of Re-collision Lemma

Combining our bounds for C1
x and C2

x,
Pr [Cx|Mx = mx] = Θ

(
1√

mx+1

)
+O

(
1√
A

)
.
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Proof of Re-collision Lemma

Combining our bounds for C1
x and C2

x,
Pr [Cx|Mx = mx] = Θ

(
1√

mx+1

)
+O

(
1√
A

)
.

Identical bounds hold for the y direction and by saparating
horizantal/vertical axis we have:

Pr [C|Mx = mx,My = my] = Θ
(

1√
(mx + 1)(my + 1)

)

+O

(
1√

A(mx + 1)
+ 1√

A(my + 1)

)
+O

(
1
A

)
.
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Proof of Re-collision Lemma

Our final step is to remove the conditioning on Mx and My. Since
direction is chosen independently and uniformly at random for each
step, E [M ]x = E [M ]y = m. By a standard Chernoff bound:

Pr[Mx ≤ m/2] ≤ 2e−(1/2)2·m/2 = O

(
1

m+ 1

)
.

(using m+ 1 instead of m to cover the m = 0 case).

6/6

An identical bound holds for My, and so, except with probability
O
(

1
m+1

)
both are ≥ m/2. We get:

Pr [C] = Θ
(

1
m+ 1

)
+O

(
1√

A(m+ 1)

)
+O

(
1
A

)
= Θ

(
1

m+ 1

)
+O

(
1
A

)
. �



Proof of First Collision Lemma

Using the fact that cj is identically distributed for all j,

E[d̃] = d = 1
t
· E[

n∑
i=1

ci] = n

t
· E[cj ] = n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1],

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).

that is
n

A
= d = n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1].
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Using the fact that cj is identically distributed for all j,

E[d̃] = d = 1
t
· E[

n∑
i=1

ci] = n

t
· E[cj ] = n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1],

Rearranging gives:

Pr [cj ≥ 1] = t

A · E[cj |cj ≥ 1] .

First-collision Lemma. Assuming t ≤ A, for all j ∈ [1, ..., n],
Pr[cj ≥ 1] = Θ( t

A log t ).

that is
n

A
= d = n

t
· Pr [cj ≥ 1] · E[cj |cj ≥ 1].
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Proof of First Collision Lemma

To compute E[cj |cj ≥ 1], we use Re-collision Lemma and linearity of
expectation. Since t ≤ A, the O

( 1
A

)
term in Re-collision Lemma is

absorbed into the Θ
(

1
m+1

)
. Let r ≤ t be the first round that the

two agents collide. We have:

E[cj |cj ≥ 1] =
t−r∑
m=0

Θ
(

1
m+ 1

)
= Θ (log(t− r)) .
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Proof of First Collision Lemma

To compute E[cj |cj ≥ 1], we use Re-collision Lemma and linearity of
expectation. Since t ≤ A, the O

( 1
A

)
term in Re-collision Lemma is

absorbed into the Θ
(

1
m+1

)
. Let r ≤ t be the first round that the

two agents collide. We have:

E[cj |cj ≥ 1] =
t−r∑
m=0

Θ
(

1
m+ 1

)
= Θ (log(t− r)) .

• After any round the agents are located at uniformly and
independently chosen positions, so collide with probability exactly
1/A.

• The probability that the first collision between the agents happens in
a given round can only decrease as we consider a round later in time.

• At least 1/2 of the time that cj ≥ 1, there is a collision in the first
t/2 rounds.

2/2

Thanks to the previous calculations,
E[cj |cj ≥ 1] = Θ (log(t− t/2)) = Θ (log t), hence
Pr [cj ≥ 1] = Θ

(
t

A·log t

)
, completing the proof. �



Proof of Collision Moment Lemma

We expand E[c̄kj ] = Pr[cj ≥ 1] · E[c̄kj |cj ≥ 1] + Pr[cj = 0] · E[c̄kj |cj = 0],
and so by First Collision Lemma:

E
[
c̄kj
]

= O

(
t

A log t · E
[
c̄kj |cj ≥ 1

]
+ E

[
c̄kj |cj = 0

])
.

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − Ecj .

For all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).
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E
[
c̄kj
]

= O

(
t

A log t · E
[
c̄kj |cj ≥ 1

]
+ E

[
c̄kj |cj = 0

])
.

E
[
c̄kj |cj = 0

]
= (Ecj)k = (t/A)k ≤ t

Ak! logk−1 t for all k ≥ 2.

Collision Moment Lemma. For j ∈ [1, ..., n], let c̄j
def= cj − Ecj .

For all k ≥ 2, assuming t ≤ A, E[c̄kj ] = O( tAk! logk−1 t).

1/4

Moreover E
[
c̄kj |cj ≥ 1

]
≤ E

[
ckj |cj ≥ 1

]
, since Ecj = t

A ≤ 1.

To prove the lemma, it just remains to show that
E
[
ckj |cj ≥ 1

]
= O

(
k! logk t

)
.



Proof of Collision Moment Lemma

Conditioning on cj ≥ 1, we know the agents have an initial collision in
some round t′ ≤ t. We split cj over rounds:
cj =

∑t
r=t′ cj(r) ≤

∑t′+t−1
r=t′ cj(r). To simplify notation we relabel

round t′ round 1 and so round t′ + t− 1 becomes round t. Expanding
ckj out fully using the summation:

E
[
ckj
]

= E

[
t∑

r1=1

t∑
r2=1

...
t∑

rk=1
cj(r1)cj(r2)...cj(rk)

]

=
t∑

r1=1

t∑
r2=1

...

t∑
rk=1

E [cj(r1)cj(r2)...cj(rk)] .
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Proof of Collision Moment Lemma

E [cr1(j)cr2(j)...crk(j)] is just the probability that the two agents
collide in each of rounds r1, r2, ...rk. Assume w.l.o.g. that
r1 ≤ r2 ≤ ... ≤ rk. By Re-collision Lemma this is:
O
(

1
r1(r2−r1+1)(r3−r2+1)...(rk−rk−1+1)

)
. So we can rewrite, by linearity

of expectation:

E
[
ckj
]

= k!
t∑

r1=1

t∑
r2=r1

...
t∑

rk=rk−1

O

(
1

r1(r2 − r1 + 1)(r3 − r2 + 1)...(rk − rk−1 + 1)

)
.

3/4



Proof of Collision Moment Lemma

The k! comes from the fact that in this sum we only have ordered
k-tuples and so need to multiple by k! to account for the fact that the
original sum is over unordered k-tuples. We can bound:

t∑
rk=rk−1

1
rk − rk−1 + 1 = 1 + 1

2 + ...+ 1
t

= O(log t)

so rearranging the sum and simplifying gives:

E
[
ckj
]

= k!
t∑

r1=1

1
r1

t∑
r2=r1+1

1
r2 − r1

...
t∑

rk=rk−1+1

1
rk − rk−1

= k!
t∑

r1=1

1
r1

t∑
r2=r1

1
r2 − r1 + 1 ...

t∑
rk−1=rk−2

1
rk−2 − rk−1 + 1 ·O(log t).
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The k! comes from the fact that in this sum we only have ordered
k-tuples and so need to multiple by k! to account for the fact that the
original sum is over unordered k-tuples. We can bound:

t∑
rk=rk−1

1
rk − rk−1 + 1 = 1 + 1

2 + ...+ 1
t

= O(log t)

so rearranging the sum and simplifying gives:

E
[
ckj
]

= k!
t∑

r1=1

1
r1

t∑
r2=r1+1

1
r2 − r1

...
t∑

rk=rk−1+1

1
rk − rk−1

= k!
t∑

r1=1

1
r1

t∑
r2=r1

1
r2 − r1 + 1 ...

t∑
rk−1=rk−2

1
rk−2 − rk−1 + 1 ·O(log t).

We repeat this simplification for each level of summation replacing∑t
ri=ri−1

1
ri−ri−1+1 with O(log t). Iterating through the k levels gives

E
[
ckj
]

= O(k! logk t) giving the lemma. � 4/4
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