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e Introduction
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The SHORTEST PATH problem

Given: a connected weighted network; source and sink nodes
Compute: the minimum-weight path connecting source to sink

Our working assumptions (can be relaxed):
@ weights are strictly positive

@ shortest path is unique
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Combinatorial network optimization

Classic algorithms for network problems are combinatorial:
manipulate discrete objects (nodes, edges, paths...)

Computational complexity expressed in terms of:
@ n: number of nodes

@ m: number of edges
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Hybrid combinatorial-numerical methods

Since 2004, a new generation of fast algorithms is emerging:

Reduce network problems to solving equations of the form

where L € R"" is a graph Laplacian matrix (see later)

“Laplacian paradigm”: build around this algorithmic primitive
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Distributed natural algorithms

Biological system Computational problem
Flashing of fireflies ~=- Synchronization

Flocking of birds = Consensus

Fly morphogenesis = Maximal Independent Set
Slime mold foraging = Shortest Path
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Introducing Physarum polycephalum

(video)
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Introducing Physarum polycephalum

@ poly-cephalum:
“Many-headed”

@ Giant cell, multiple
nuclei

@ Inhabits shady and
moist areas, decaying
logs, ...
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Introducing Physarum polycephalum
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Maze-solving by P. polycephalum

() d)

Nakagaki, Yamada, Téth, Nature (2000)
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Maze experiment

(video)
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Network design by P. polycephalum

Tero et al., Science (2010)

Physarum network

Rail system around Tokyo
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Physarum dynamics and optimization problems

Tero, Kobayashi and Nakagaki (2007) proposed a mathematical
model for the network dynamics of the maze experiment

Variants of this model converge to optimal (!) solutions of classic
optimization problems:

@ Shortest path in undirected graphs

@ /1-norm regression

@ Shortest path in directed graphs

@ Linear optimization
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© The static network equations
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Valid flows

e Connected graph G = (N, E)
@ 59, 51 € N: source and sink

—
@ Fix an arbitrary orientation E on the edges

A function z : E — R is a valid flow if:
@ the net flow out of sp is +1
@ the net flow out of s; is —1

@ the net flow out of any other node is 0

where the net flow out of v € N is

Z Ze — Z ze (= outflow(v) — inflow(v))

e:(u,v)EE e’:(v,u)EE>
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Incidence matrix and flow conservation

The signed incidence matrix A € RV*E is:
A,e = +1 if edge e starts in v, —1 if edge e ends at v, 0 otherwise

The balance vector b € RN is:
b, = +1 if v = source, —1 if v = sink, 0 otherwise

+1 41 0 0 0 +1
-1 0 41 41 0 | o
A=l o0 -1 -1 0 41 b=1 9
0 0 0 -1 —1 -1

|zis a valid flow & A-z = b)|
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Shortest path flow vs. electrical flow

Among all valid flows z: (assuming all weights = 1)
@ The shortest path minimizes ||z||; := |z1| + |22| + .ot |Zm]
@ The electrical flow minimizes ||z||, := (22 + 22 + ... + z2)'/?

minimize ||z||, minimize | z||,
such that Az = b such that Az = b

The Physarum flow is an electrical flow!
However it evolves as weights are adapted via feedback J
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Electric-hydraulic analogy

Ce

g

Pyl Do

Poiseuille’'s law in fluidodynamics states that

R4 u - FMv u- Fv
qo= " RePu=P) oy X P PY)
8/’7 Ce Ce

potential difference
flow =

resistance

Analogous to Ohm's law
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The Laplacian matrix

Denote by w, the weight of an edge e = (u, v)

Zeeé(u) we fu=v

Lyy =14 —we if (u,v)=eckE
0 otherwise.
13
20 —-13 -7
; L= —-13 13 0
-7 0 7
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Factorization of the Laplacian

@ A is the signed incidence matrix, for example:

edges
+1 +1
A= -1 0 nodes
0 -1

o W is the diagonal m x m weight matrix, for example:

13 0
W—|:O 7:|}edges
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Weights in the Physarum network

The weight of an edge is the ratio ** (= —1 )

resistance(e)

1 0
w— |0 0
0 o

The c. are static, but the x. will evolve with time
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Recap of the static equations

A valid flow is a vector z € RE that satisfies flow conservation:
(A = incidence matrix)

The electrical flow g € RE is related to the potentials p by Ohm's
law:

q:W.AT.p

The node potentials p € RV are the solutions to Poisson’s equation:

+1 ifu=s
AWATp=L-p=b with b, = { —1

ifu:sl

0 otherwise
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Energy dissipation

flow(e)?

Energy dissipation £ := Z m
weight(e

ecE

Observation. If our flow and weights encode a single path P,

12
£ E e, cost o

ecP
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Two important principles of electrical networks

Thomson's principle

The electrical flow g is the
unique minimizer of the energy
dissipation among all valid
flows.

ONE HUNDRED
POUNDS STERLING

Conservation of energy

The energy dissipation of g
equals the potential difference W”“amai';°L”:;3”Kg32n4‘19°7)
between source and sink.

I A

‘Snscow s NoveHaEn )

> Al pais -
‘r? i\g %~ 2008457
RE
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© The network dynamics
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The weights’ dynamics: TKN model

The tubes are elastic and respond to the flow J

TKN postulate the flow g. to be the “driving” variable:

dxe
= ela()) —x| VecE

where ¢ : R, — R, is an increasing function

Interpretation as a mechanism

o Large flow = tube expands
@ Small flow = tube contracts
@ Direction of flow does not matter
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Forms of response functions

Proposed form for the edge response function ¢:

(1+ a)y*
14+ ay+

o(y) =

p=1a=0 pn=075 a=1 p=2a=1

There are no experimental data on what the true response actually
looks like
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@ Convergence analysis
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What is the global behavior of the dynamics?

It is not a priori clear whether the local adaptation mechanism

Xe = ¢(lge(x)]) — xe

gives rise to a globally meaningful behavior
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Two parallel links example

Assume response function p(y) =y = Xe = |qe(X)| — Xe

c % X1/C1 X
1= ;7 — X1
x1/c+ xo/c
S0 S1 - X2/C2
Xp = ——"——X
(e} X1/C1+X2/C2
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TKN dynamics when ¢(y) = y

Consider

%= ()l — x

under some initial condition x(0) > 0

Theorem (B., Mehlhorn, Varma, 2012)

For any graph and any initial condition, as time t — oo,

xo(t) — 1 if e belongs to the shortest sy — s; path,
Xe(t) — O otherwise.

That is, the model computes the shortest path
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TKN dynamics when p(y) = y*

(b)

(a) If > 1, both paths are stable; initial condition matters
(b) If u < 1, the stable fixpoint does not correspond to any path

The TKN model computes the shortest path only when p = 1! |
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A revised model

Let's postulate that the controlling variable is not the flow g,
but the pressure gradient, (p, — pv)/ce

By Poiseuille’s law,

So we postulate

dx,
dt

qe(x)

e

(o

)~

Veec E

Note: When ¢(y) = y, this model is equivalent to TKN
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Robustness of the revised model

Claim: in the revised model, convergence to optimality is guaranteed
for any “standard” response function on parallel links networks

A standard response function
¢ Ry — R, satisfies:

0 ¢(1)=1
@ ¢ is strictly increasing

© ¢ is smooth
(differentiable)

These include ¢(y) = ((1 + a)y*)/(1 + ay*) and much more
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Typical steps of the analysis

@ Characterization of the equilibrium points of the dynamics
© The dynamics converge to some equilibrium point
© Energy dissipation converges to the shortest path length

Points 2 and 3 require defining appropriate potential functions
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Parallel-links networks

In such a network, the signed incidence matrix A is

+1 41 .. 4]
A_[—l -1 ... —1}

The Laplacian matrix is

_ T Xe | 1 -1
L= AWA _<ZC6> {_1 ) }
eckE

The energy dissipation is
-1
Z X,
g e —e
ecE
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Location of fixed points

Since £ = ps, — ps, (conservation of energy), by Ohm'’s law

%:é Ve

Xe Ce

A fixed point of our dynamics satisfies

((8)) 0

= for each e, either x. =0 or £ = ¢,

= there can be at most one nonzero x. (as costs are distinct)
= exactly one x, =1

x is a fixed point < x is of the form (0,...,0,1,0,...,0) J
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Nature of fixed points

To study the stability of fixed points, use the Jacobian matrix
OX;
J(x); = [ ==
A fixed point x is

e stable if all eigenvalues of J(x) have Re()\) <0

@ unstable if some eigenvalues of J(x) have Re(\) > 0

stable unstable unstable

)
ﬁw\

N7
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Nature of fixed points

If we compute J(e;) (equilibrium corresponding to edge 1), we get

—¢'(1) —2¢'(1) ... —2¢(1)
0 plg)—-1 ... 0
J(er) = 0 ( o> N 0

0 0 e(2)-1
Observation: ¢(y) > 1<y > 1, since (1) =1

Equilibrium ey is stable < ¢ < ¢j for each j # 1
& Edge 1 is the shortest edge J

Nothing special about e;: the same holds for e,, ..., e,
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Convergence to an equilibrium

Does the process converge?
How do we rule out cycles in the dynamics?

Introduce a potential function to track progress

A Lyapunov function is a continuous function V : RT — R such that
@ V is bounded from below
@ 4V(x(1) <0
Q@ ZV(x(t)) =0 < x is an equilibrium point

Then 4 V/(x(t)) must approach zero as t — oo
= x must approach an equilibrium point
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Lyapunov function for parallel links

er—i—logﬁ er—log (Z )

Property 1: V/(x) is bounded from below
Q@ All x. > 0, always
Q All x, < 2, after some finite time: as long as x, > 2,

(o (2) 1) < (s (2) 1) <o

hence the dynamics are repelled from the region x, > 2.

@ Since x. € [0,2], V(x) cannot be less than some constant
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Convergence to an equilibrium

Property 2

V=0« Ve (xe=0o0r & =c) < xis an equilibrium.

Hence V is a Lyapunov function
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Convergence to the shortest-edge equilibrium

It suffices to show that & — ¢; where i is the shortest edge

Proof by contradiction: if £(t) > (1 + d)c; for all large t, then

—logx; = —
dt g% X

39
Xi Ci
>p(1+6)—1
>0,

so x;(t) — oo, contradiction to x;(t) < 2 for all large enough t.

V. Bonifaci (IASI-CNR) P. polycephalum e il cammino minimo 21/11/2018



complex example

)-<1 = R(XQX::, + X3Xs + X3X5 + X4X5) — X1
X1 X
1 3 X = R(X1X4 + X3X4 + X3X5 + XgX5) —
@ e X3 = R(XIXA' + X1X2 + X1X5 + XoX5) —
x2 X3 Xq = X_K4(X2X3 + x1x0 + X1 X5 + XoX5) — Xg
X5 = ‘%(X1X4 — Xox3)| — Xs,
where

K = X1XoX3+ X1 XoXs + X1 X3Xa + X1 X3 X5 + Xo X3 Xa -+ X1 Xa X5+ X2 X3 X5 + Xo X4 X5
(Kirchhoff polynomial of the network)
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What is known for general networks?

Analyzing the revised model on arbitrary topologies is difficult
Theoretical results are known for
@ o(y) =y (see B., Mehlhorn & Varma 2012 or B. 2013)
o ¢(y) =y? (B. 2019)

Simulations suggest convergence to optimum with any standard
response function ¢
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Equilibrium points for general networks

On parallel links networks, we had a fixed point for each edge:

x is a fixed point < x is of the form (0,...,0,1,0,...,0) J

For general networks, fixed points correspond to source-sink paths

x is a fixed point < x is the characteristic vector of a valid path J
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The case p(y) =y

One Lyapunov function that works is

V(x) = Et—c(:) + (cuto(x) — 1)?

where:

@ cut,(x) is the value of a minimum x-weighted cut

@ cuty(x) is the value of the x-weighted cut around the source
V' has the required properties

Important ingredients: Thomson's principle + Max-Flow Min-Cut
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The case ¢(y) = y?

When o(y) = y?, the dynamics can be written in a very nice form
Of (x)

Oxe
which is a rescaled form of gradient descent. Here,

f(x):= Z CeXe + E(X)

ecE

eE

Xe = —Xe

This simplifies the analysis
considerably since f is

o automatically a Lyapunov
/ function for the dynamics
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From continuous to discrete time

Euler discretization of the dynamics (with p(y) = y):

=lq(x")|—x*| k=012

7 is the discretization step

Implementation:
@ Solve the Laplacian linear system L(x*)p = b
@ Compute g(x¥) = W(x)ATp
@ Compute x* = (1 — n)x* + n |q(x*)|
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Discrete dynamics with p(y) =y

Theorem (Becchetti, B. et al. '13; Straszak-Vishnoi '16)

There is an x° o< 1 such that after k steps, with

~ n c
k:O(—s- "“””-),e>o,
€ Cmin

the Euler discretization satisfies

where x* is the optimal solution.
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© s it a distributed process?
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s it really a distributed process?

The discrete process iterates this cycle:
@ Solve L(x¥)p=b
@ Compute g(x¥) = W(x)ATp
@ Compute x* = (1 — n)xk + n |q(x*)|

Steps 2 and 3 use only local information

But is there a local formulation of step 17
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Distributed Laplacian solving

Consider a connected network G with weights x € RE
Can we solve L(x) p = b through a decentralized process?

We consider two approaches:
@ Jacobi's method (deterministic)
@ Token diffusion (stochastic)
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Jacobi’'s method

An iterative method:

Q
T DY 7. A S J

)
vau Xuy

Node u maintains information of pf,k) and b,

To update node u, need information only from the neighbors of u

Jacobi's method is convergent and
L-pk) — b as k — o

But how fast in terms of the network parameters?
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Convergence rate of Jacobi's method

Theorem (Becchetti, B., Natale 2018)

The error in Jacobi’s method converges to zero at rate

O(max(|1 — Xo|*, |1 = Aa[5)

where 0 = \; < A\ < ... < A\, < 2 are the eigenvalues of the
normalized Laplacian of the network.

However, Jacobi's method presupposes that nodes exchange real
numbers — not so realistic in the slime mold context
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A stochastic diffusion-based model

Instead of continuous flows, consider flow particles (tokens)

Repeat forever:
@ insert one new token at the source

@ each token moves from node u to neighbor v with
probability proportional to the weight x,,

© remove all tokens at the sink, if any
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Convergence of token diffusion

Theorem (Becchetti, B., Natale, 2018)

The number of tokens Zﬁf) on node u, as t — 0o, satisfies

E [Z9] = Lyup.

The number of tokens at u can be used to estimate the local node
potential p,

Hence, token diffusion also converges to the correct values

The more “well-connected” the graph is, the faster the convergence
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Fully local explanation: an open problem

The token diffusion process was analyzed for fixed weights

Does everything still work if we couple the diffusion dynamics with
the edge-response dynamics, adapting the weights along the way? J

Seems plausible, but no analysis available so far!
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© Beyond the network setting
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Beyond the network setting

The shortest path problem can be expressed as

m
min 3" 6|
j=1
st. Az=b,ze R™
where A is the signed incidence matrix of the graph
What if A is not a network matrix?

The problem is called an /;-norm regression problem

An important problem in statistics and signal processing
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Solving /1-regression

No network interpretation, but the math still works!
We just ask A to be a full-rank matrix (then L = AWA' is invertible)

We still use the dynamics

()

where now g(x) := W(x)ATL7(x)
Theorem (Straszak-Vishnoi 2016; B. 2019)

When =1 or ;o = 2, the dynamics converges to an optimal solution
of the ¢;-regression problem.

Convergence is often provably fast (see references)

V. Bonifaci (IASI-CNR) P. polycephalum e il cammino minimo 21/11/2018 56 /58



Problems solved by Physarum dynamics

Undirected Directed
dynamics dynamics
x=lqx)[=x| x=alx)—x

Network Undirected Directed
setting shortest path shortest path
Algebraic minc' |z| minc'z
setting Az=b>b Az=b,z>0

(1-regression | Linear programming
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Conclusions

@ The TKN model achieves optimality only for the response
function p(y) =y

@ A revised model achieves optimality for any set of standard
response functions

e Proved analytically for parallel-links graphs
e Proved analytically for any graph if p € {1,2}
e Supported by simulations for more general topologies

@ Process can be truly distributed (complete analysis still missing)

@ A simple generalization of the dynamics can solve the more
general (1-regression problem or even linear programming
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