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The Shortest Path problem

Given: a connected weighted network; source and sink nodes
Compute: the minimum-weight path connecting source to sink
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Our working assumptions (can be relaxed):

weights are strictly positive

shortest path is unique
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Combinatorial network optimization

Classic algorithms for network problems are combinatorial:
manipulate discrete objects (nodes, edges, paths. . . )

Computational complexity expressed in terms of:

n: number of nodes

m: number of edges
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Hybrid combinatorial-numerical methods

Since 2004, a new generation of fast algorithms is emerging:

Reduce network problems to solving equations of the form

L x = b

where L ∈ Rn×n is a graph Laplacian matrix (see later)

“Laplacian paradigm”: build around this algorithmic primitive

V. Bonifaci (IASI-CNR) P. polycephalum e il cammino minimo 21/11/2018 4 / 58



Distributed natural algorithms

Biological system Computational problem
Flashing of fireflies ⇒ Synchronization
Flocking of birds ⇒ Consensus
Fly morphogenesis ⇒ Maximal Independent Set
Slime mold foraging ⇒ Shortest Path
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Introducing Physarum polycephalum

(video)
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Introducing Physarum polycephalum

poly-cephalum:
“Many-headed”

Giant cell, multiple
nuclei

Inhabits shady and
moist areas, decaying
logs, . . .
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Introducing Physarum polycephalum

were repeated with the Stylonychia and Porphyra sequences
deleted.

Distance analyses with the Porphyra and Stylonychia se-
quences deleted show 85% bootstrap support for the Myce-
tozoa as members of a larger crown group including green
plants, animals, and fungi and 70% bootstrap support for the
Mycetozoa as closer to the animal–fungal clade than are the
green plants (Fig. 2). Likewise, protein maximum likelihood
analysis without these sequences shows 82% bootstrap support
for a crown placement of the Mycetozoa and 75% support for
their sisterhood with animals � fungi (Fig. 2). However,
parsimony analysis, albeit the most refractory to the correction
of long-branch effects (31), still finds less than 50% bootstrap
support for either relationship.

DISCUSSION

EF-1� Phylogeny Strongly Supports a Monophyletic Myce-

tozoa. We have enzymatically amplified and sequenced the
EF-1�-encoding genes from representatives of each of the
three recognized subclasses of Mycetozoa, the cellular (dic-
tyostelid), acellular (myxogastrid), and protostelid slime molds
(Fig. 1). Phylogenetic analyses of a broadly representative
EF-1� data set show strong support for the monophyly of the
group by all methods of analysis used (86–100% bootstrap, Fig.
2). Strong support for a monophyletic Mycetozoa, represented
by Dictyostelium and Physarum, is also found by analyses of

actin (72–95% bootstrap, refs. 12 and 13) and of �-tubulin
(74–91% bootstrap, ref. 14).

The EF-1� data further subdivide the Mycetozoa into a
myxogastrid–dictyostelid clade strongly excluding the amoe-
boflagellate protostelid, Planoprotostelium aurantium (89–
97% bootstrap, Fig. 2). Thus, the myxogastrid–dictyostelid
divergence does not appear to represent the deepest division
within the Mycetozoa. This suggests that the differences
between these taxa, such as an amoeboflagellate versus strictly
amoeboid condition and plasmodial versus aggregative devel-
opment, may not be as profound as many have considered
them to be. Both Olive (1) and Spiegel (18) have argued that
a strictly amoeboid trophic stage, at least, has probably evolved
multiple times among the protostelids.

The Mycetozoa as Members of a Eukaryote Crown Group.

Phylogenetic analyses of EF-1� sequences also place the
Mycetozoa among the multicellular eukaryotes as the imme-
diate outgroup to the animal–fungal clade (Fig. 2). This
topology is favored by all analytical methods used (Fig. 2),
although there is no immediate bootstrap support for this
specific topology by any method. However, distance and
maximum likelihood analyses of the EF-1� data with the
Porphyra and Stylonychia sequences deleted show greatly
increased bootstrap support for both the placement of the
Mycetozoa within the eukaryote crown and for these taxa as
more closely related to the animal–fungal clade than are green
plants (82–85% and 70–75%, respectively). Since bootstrap

FIG. 2. Phylogenetic analyses of EF-1� amino acid sequences show a monophyletic, late-branching Mycetozoa. The tree shown is one of two
shortest trees found by parsimony analysis; the other tree at this length places Schizosaccharomyces at the base of the Zygomycete � Basidiomycete
clade. The tree is 2,319 steps long, and branches are drawn to scale as indicated. Dotted lines indicate the differences in the tree topology
reconstructed by distance analysis. Bootstrap values over 50% are indicated above the nodes for parsimony analysis and below the nodes and to
the left of the ‘‘�’’ for distance analysis. Dots (·) below the nodes (to the right of a ‘‘�’’) indicate which nodes were constrained for maximum likelihood
analysis. The results of bootstrap analyses with the Porphyra and Stylonychia sequences excluded are indicated in parentheses to the left and right
of the ‘‘�,’’ respectively, for distance and maximum likelihood analyses.

12010 Evolution: Baldauf and Doolittle Proc. Natl. Acad. Sci. USA 94 (1997)
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Maze-solving by P. polycephalum

Nakagaki, Yamada, Tóth, Nature (2000)
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Maze experiment

(video)
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Network design by P. polycephalum

Tero et al., Science (2010)

accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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Physarum network

accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).
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small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).

CA

D

E

LFS

B

F

22 JANUARY 2010 VOL 327 SCIENCE www.sciencemag.org440

REPORTS

 o
n 

Fe
br

ua
ry

 9
, 2

01
0 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

Rail system around Tokyo
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Physarum dynamics and optimization problems

Tero, Kobayashi and Nakagaki (2007) proposed a mathematical
model for the network dynamics of the maze experiment

Variants of this model converge to optimal (!) solutions of classic
optimization problems:

Shortest path in undirected graphs

`1-norm regression

Shortest path in directed graphs

Linear optimization
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Valid flows

Connected graph G = (N ,E )

s0, s1 ∈ N : source and sink

Fix an arbitrary orientation
#»

E on the edges

A function z :
#»

E → R is a valid flow if:

the net flow out of s0 is +1

the net flow out of s1 is −1

the net flow out of any other node is 0

where the net flow out of v ∈ N is∑
e=(u,v)∈ #»

E

ze −
∑

e′=(v ,u)∈ #»
E

ze′ (= outflow(v)− inflow(v))
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Incidence matrix and flow conservation

The signed incidence matrix A ∈ RN×E is:
Ave = +1 if edge e starts in v , −1 if edge e ends at v , 0 otherwise

The balance vector b ∈ RN is:
bv = +1 if v = source, −1 if v = sink, 0 otherwise

A =


+1 +1 0 0 0
−1 0 +1 +1 0
0 −1 −1 0 +1
0 0 0 −1 −1

 b =


+1
0
0
−1


z is a valid flow ⇔ A · z = b
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Shortest path flow vs. electrical flow

Among all valid flows z : (assuming all weights = 1)

The shortest path minimizes ‖z‖1 := |z1|+ |z2|+ . . . + |zm|
The electrical flow minimizes ‖z‖2 := (z2

1 + z2
2 + . . . + z2

m)1/2

s1

s0

1

1

minimize ‖z‖1

such that Az = b

s1

s0

3/5
2/5

2/5
3/5

2/5

minimize ‖z‖2

such that Az = b

The Physarum flow is an electrical flow!
However it evolves as weights are adapted via feedback
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Electric-hydraulic analogy
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qe

pu pv

Poiseuille’s law in fluidodynamics states that

qe =
π

8η

R4
e (pu − pv )

ce
= constant · xe(pu − pv )

ce

flow =
potential difference

resistance

Analogous to Ohm’s law
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The Laplacian matrix

Denote by we the weight of an edge e = (u, v)

Lu,v :=


∑

e∈δ(u) we if u = v

−we if (u, v) = e ∈ E

0 otherwise.

1

2

3

13

7
L =

 20 −13 −7
−13 13 0
−7 0 7


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Factorization of the Laplacian

L = AWA>

A is the signed incidence matrix, for example:

A =

edges︷ ︸︸ ︷ +1 +1
−1 0
0 −1

 nodes

W is the diagonal m ×m weight matrix, for example:

W =

[
13 0
0 7

]}
edges
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Weights in the Physarum network

The weight of an edge is the ratio xe
ce

(= 1
resistance(e)

)

W =


x1

c1
. . . 0

0 . . . 0
. . . . . . . . .
0 . . . xm

cm


The ce are static, but the xe will evolve with time
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Recap of the static equations

A valid flow is a vector z ∈ RE that satisfies flow conservation:

A · z = b (A = incidence matrix)

The electrical flow q ∈ RE is related to the potentials p by Ohm’s
law:

q = W · A> · p

The node potentials p ∈ RN are the solutions to Poisson’s equation:

AWA>p = L · p = b with bu =


+1 if u = s0

−1 if u = s1

0 otherwise
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Energy dissipation

Energy dissipation E :=
∑
e∈E

flow(e)2

weight(e)

Observation. If our flow and weights encode a single path P ,

E =
∑
e∈P

12

1/ce
= cost of P
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Two important principles of electrical networks

Thomson’s principle
The electrical flow q is the
unique minimizer of the energy
dissipation among all valid
flows.

Conservation of energy
The energy dissipation of q
equals the potential difference
between source and sink.

William Thomson (1824–1907)
aka Lord Kelvin
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The weights’ dynamics: TKN model

The tubes are elastic and respond to the flow

TKN postulate the flow qe to be the “driving” variable:

dxe
dt

= ϕ(|qe(x)|)− xe ∀e ∈ E

where ϕ : R+ → R+ is an increasing function

Interpretation as a positive feedback mechanism
Large flow ⇒ tube expands

Small flow ⇒ tube contracts

Direction of flow does not matter
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Forms of response functions

Proposed form for the edge response function ϕ:

ϕ(y) =
(1 + α)yµ

1 + αyµ

µ = 1, α = 0

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

µ = 0.75, α = 1

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

µ = 2, α = 1

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

There are no experimental data on what the true response actually
looks like
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What is the global behavior of the dynamics?

It is not a priori clear whether the local adaptation mechanism

ẋe = ϕ(|qe(x)|)− xe

gives rise to a globally meaningful behavior
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Two parallel links example

Assume response function ϕ(y) = y ⇒ ẋe = |qe(x)| − xe

s0 s1

c1

c2

ẋ1 =
x1/c1

x1/c1 + x2/c2
− x1

ẋ2 =
x2/c2

x1/c1 + x2/c2
− x2.
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State space for two parallel links

s0 s1

c1 = 1

c2 = 0.8
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TKN dynamics when ϕ(y) = y

Consider
ẋ = |q(x)| − x

under some initial condition x(0) > 0

Theorem (B., Mehlhorn, Varma, 2012)

For any graph and any initial condition, as time t →∞,

xe(t)→ 1 if e belongs to the shortest s0 − s1 path,

xe(t)→ 0 otherwise.

That is, the model computes the shortest path
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TKN dynamics when ϕ(y) = yµ

ẋ = |q(x)|µ − x , µ 6= 1

(a) If µ > 1, both paths are stable; initial condition matters

(b) If µ < 1, the stable fixpoint does not correspond to any path

The TKN model computes the shortest path only when µ = 1!
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A revised model

Let’s postulate that the controlling variable is not the flow qe ,
but the pressure gradient, (pu − pv )/ce

By Poiseuille’s law,
pu − pv

ce
∝ qe

xe

So we postulate

dxe
dt

= xe

(
ϕ

(∣∣∣∣qe(x)

xe

∣∣∣∣)− 1

)
∀e ∈ E

Note: When ϕ(y) = y , this model is equivalent to TKN
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Robustness of the revised model

Claim: in the revised model, convergence to optimality is guaranteed
for any “standard” response function on parallel links networks

A standard response function
ϕ : R+ → R+ satisfies:

1 ϕ(1) = 1

2 ϕ is strictly increasing

3 ϕ is smooth
(differentiable)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

These include ϕ(y) = ((1 + α)yµ)/(1 + αyµ) and much more
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Typical steps of the analysis

1 Characterization of the equilibrium points of the dynamics

2 The dynamics converge to some equilibrium point

3 Energy dissipation converges to the shortest path length

Points 2 and 3 require defining appropriate potential functions
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Parallel-links networks

In such a network, the signed incidence matrix A is

A =

[
+1 +1 . . . +1
−1 −1 . . . −1

]
The Laplacian matrix is

L = AWA> =

(∑
e∈E

xe
ce

)
·
[

1 −1
−1 1

]
The energy dissipation is

E =

(∑
e∈E

xe
ce

)−1
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Location of fixed points

Since E = ps0 − ps1 (conservation of energy), by Ohm’s law

qe
xe

=
E
ce
∀e

A fixed point of our dynamics satisfies

xe ·
(
ϕ

(
E
ce

)
− 1

)
= 0 ∀e

⇒ for each e, either xe = 0 or E = ce
⇒ there can be at most one nonzero xe (as costs are distinct)
⇒ exactly one xe = 1

x is a fixed point ⇔ x is of the form (0, . . . , 0, 1, 0, . . . , 0)
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Nature of fixed points

To study the stability of fixed points, use the Jacobian matrix

J(x)i , j =

(
∂ẋi
∂xj

)
A fixed point x is

stable if all eigenvalues of J(x) have Re(λ) < 0

unstable if some eigenvalues of J(x) have Re(λ) > 0

stable

4.1 The Trace-Determinant Plane 63

Thus we have

T +
√

T 2 − 4D > 0

T −
√

T 2 − 4D < 0

so the eigenvalues are real and have different signs. If D > 0 and T < 0 then
both

T ±
√

T 2 − 4D < 0,

so we have a (real) sink. Similarly, T > 0 and D > 0 leads to a (real) source.
When D = 0 and T ̸= 0, we have one zero eigenvalue, while both

eigenvalues vanish if D = T = 0.
Plotting all of this verbal information in the TD–plane gives us a visual

summary of all of the different types of linear systems. The equations above
partition the TD–plane into various regions in which systems of a particular
type reside. See Figure 4.1. This yields a geometric classification of 2 × 2 linear
systems.

Det

Tr

T2!4D

Figure 4.1 The trace-determinant plane. Any resemblance to any of the
authors’ faces is purely coincidental.

unstable

40 Chapter 3 Phase Portraits for Planar Systems

with λ1 < 0 < λ2. This can be solved immediately since the system decouples
into two unrelated first-order equations:

x ′ = λ1x

y ′ = λ2y .

We already know how to solve these equations, but, having in mind what
comes later, let’s find the eigenvalues and eigenvectors. The characteristic
equation is

(λ − λ1)(λ − λ2) = 0

so λ1 and λ2 are the eigenvalues. An eigenvector corresponding to λ1 is (1, 0)
and to λ2 is (0, 1). Hence we find the general solution

X(t ) = αeλ1t
(

1

0

)
+ βeλ2t

(
0

1

)
.

Since λ1 < 0, the straight-line solutions of the form αeλ1t (1, 0) lie on the
x-axis and tend to (0, 0) as t → ∞. This axis is called the stable line. Since
λ2 > 0, the solutions βeλ2t (0, 1) lie on the y-axis and tend away from (0, 0) as
t → ∞; this axis is the unstable line. All other solutions (with α, β ̸= 0) tend
to ∞ in the direction of the unstable line, as t → ∞, since X(t ) comes closer
and closer to (0, βeλ2t ) as t increases. In backward time, these solutions tend
to ∞ in the direction of the stable line. !

In Figure 3.1 we have plotted the phase portrait of this system. The phase
portrait is a picture of a collection of representative solution curves of the

Figure 3.1 Saddle phase
portrait for x ′ = –x,
y ′ = y.

unstable

4.1 The Trace-Determinant Plane 63

Thus we have

T +
√

T 2 − 4D > 0

T −
√

T 2 − 4D < 0

so the eigenvalues are real and have different signs. If D > 0 and T < 0 then
both

T ±
√

T 2 − 4D < 0,

so we have a (real) sink. Similarly, T > 0 and D > 0 leads to a (real) source.
When D = 0 and T ̸= 0, we have one zero eigenvalue, while both

eigenvalues vanish if D = T = 0.
Plotting all of this verbal information in the TD–plane gives us a visual

summary of all of the different types of linear systems. The equations above
partition the TD–plane into various regions in which systems of a particular
type reside. See Figure 4.1. This yields a geometric classification of 2 × 2 linear
systems.

Det

Tr

T2!4D

Figure 4.1 The trace-determinant plane. Any resemblance to any of the
authors’ faces is purely coincidental.
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Nature of fixed points

If we compute J(e1) (equilibrium corresponding to edge 1), we get

J(e1) =


−ϕ′(1) − c1

c2
ϕ′(1) . . . − c1

cm
ϕ′(1)

0 ϕ
(

c1

c2

)
− 1 . . . 0

0 0 . . . 0

0 0 . . . ϕ
(

c1

cm

)
− 1


Observation: ϕ(y) ≥ 1⇔ y ≥ 1, since ϕ(1) = 1

Equilibrium e1 is stable ⇔ c1 < cj for each j 6= 1
⇔ Edge 1 is the shortest edge

Nothing special about e1: the same holds for e2, . . . , em
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Convergence to an equilibrium

Does the process converge?
How do we rule out cycles in the dynamics?

Introduce a potential function to track progress

A Lyapunov function is a continuous function V : Rm
+ → R such that

1 V is bounded from below

2 d
dt
V (x(t)) ≤ 0

3 d
dt
V (x(t)) = 0 ⇔ x is an equilibrium point

Then d
dt
V (x(t)) must approach zero as t →∞

⇒ x must approach an equilibrium point
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Lyapunov function for parallel links

V (x) :=
∑
e

xe + log E(x) =
∑
e

xe − log

(∑
e

xe
ce

)

Property 1: V (x) is bounded from below
1 All xe ≥ 0, always

2 All xe ≤ 2, after some finite time: as long as xe > 2,

ẋe < xe

(
ϕ

(
|qe |

2

)
− 1

)
≤ xe

(
ϕ

(
1

2

)
− 1

)
< 0

hence the dynamics are repelled from the region xe > 2.

3 Since xe ∈ [0, 2], V (x) cannot be less than some constant
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Convergence to an equilibrium

Property 2

V̇ (x) =
∑
e∈E

∂V

∂xe
ẋe

=
∑
e∈E

(
1− E

ce

)
xe

(
ϕ

(
E
ce

)
− 1

)
≤ 0

Property 3

V̇ = 0⇔ ∀e (xe = 0 or E = ce)⇔ x is an equilibrium.

Hence V is a Lyapunov function
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Convergence to the shortest-edge equilibrium

It suffices to show that E → ci where i is the shortest edge

Proof by contradiction: if E(t) ≥ (1 + δ)ci for all large t, then

d

dt
log xi =

ẋi
xi

=
xi
xi

(
ϕ

(
E
ci

)
− 1

)
≥ ϕ (1 + δ)− 1

> 0,

so xi(t)→∞, contradiction to xi(t) ≤ 2 for all large enough t.
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A more complex example

s0 s1

x1

x2

x3

x4

x5

ẋ1 =
x1

K
(x2x3 + x3x4 + x3x5 + x4x5)− x1

ẋ2 =
x2

K
(x1x4 + x3x4 + x3x5 + x4x5)− x2

ẋ3 =
x3

K
(x1x4 + x1x2 + x1x5 + x2x5)− x3

ẋ4 =
x4

K
(x2x3 + x1x2 + x1x5 + x2x5)− x4

ẋ5 =
∣∣∣x5

K
(x1x4 − x2x3)

∣∣∣− x5,

where
K = x1x2x3+x1x2x4+x1x3x4+x1x3x5+x2x3x4+x1x4x5+x2x3x5+x2x4x5

(Kirchhoff polynomial of the network)
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What is known for general networks?

Analyzing the revised model on arbitrary topologies is difficult

Theoretical results are known for

ϕ(y) = y (see B., Mehlhorn & Varma 2012 or B. 2013)

ϕ(y) = y 2 (B. 2019)

Simulations suggest convergence to optimum with any standard
response function ϕ
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Equilibrium points for general networks

On parallel links networks, we had a fixed point for each edge:

x is a fixed point ⇔ x is of the form (0, . . . , 0, 1, 0, . . . , 0)

For general networks, fixed points correspond to source-sink paths

x is a fixed point ⇔ x is the characteristic vector of a valid path

V. Bonifaci (IASI-CNR) P. polycephalum e il cammino minimo 21/11/2018 43 / 58



The case ϕ(y) = y

One Lyapunov function that works is

V (x) :=

∑
e cexe

cut∗(x)
+ (cut0(x)− 1)2

where:

cut∗(x) is the value of a minimum x-weighted cut

cut0(x) is the value of the x-weighted cut around the source

V has the required properties

Important ingredients: Thomson’s principle + Max-Flow Min-Cut
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The case ϕ(y) = y 2

When ϕ(y) = y 2, the dynamics can be written in a very nice form

ẋe = −xe
∂f (x)

∂xe
, e ∈ E

which is a rescaled form of gradient descent. Here,

f (x) :=
∑
e∈E

cexe + E(x)

This simplifies the analysis
considerably since f is
automatically a Lyapunov
function for the dynamics
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From continuous to discrete time

Euler discretization of the dynamics (with ϕ(y) = y):

xk+1 − xk

η
=
∣∣q(xk)

∣∣− xk k = 0, 1, 2, . . .

η is the discretization step

Implementation:

1 Solve the Laplacian linear system L(xk)p = b

2 Compute q(xk) = W (xk)A>p

3 Compute xk+1 = (1− η)xk + η
∣∣q(xk)

∣∣
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Discrete dynamics with ϕ(y) = y

Theorem (Becchetti, B. et al. ’13; Straszak-Vishnoi ’16)

There is an x0 ∝ 1 such that after k steps, with

k = Õ

(
n

ε3
· cmax

cmin

·
)
, ε > 0,

the Euler discretization satisfies

c>x∗ ≤ c>xk ≤ (1 + ε)c>x∗

where x∗ is the optimal solution.
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Is it really a distributed process?

The discrete process iterates this cycle:

1 Solve L(xk)p = b

2 Compute q(xk) = W (xk)A>p

3 Compute xk+1 = (1− η)xk + η
∣∣q(xk)

∣∣
Steps 2 and 3 use only local information

But is there a local formulation of step 1?
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Distributed Laplacian solving

Consider a connected network G with weights x ∈ RE

Can we solve L(x) p = b through a decentralized process?

We consider two approaches:

1 Jacobi’s method (deterministic)

2 Token diffusion (stochastic)
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Jacobi’s method

An iterative method:

p(k+1)
u =

bu +
∑

v∼u xuvp
(k)
v∑

v∼u xuv
, k = 0, 1, . . .

Node u maintains information of p
(k)
u and bu

To update node u, need information only from the neighbors of u

Jacobi’s method is convergent and

L · p(k) → b as k →∞

But how fast in terms of the network parameters?
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Convergence rate of Jacobi’s method

Theorem (Becchetti, B., Natale 2018)

The error in Jacobi’s method converges to zero at rate

O(max(|1− λ2|k , |1− λn|k))

where 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2 are the eigenvalues of the
normalized Laplacian of the network.

However, Jacobi’s method presupposes that nodes exchange real
numbers – not so realistic in the slime mold context
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A stochastic diffusion-based model

Instead of continuous flows, consider flow particles (tokens)

s

t

Repeat forever:

1 insert one new token at the source

2 each token moves from node u to neighbor v with
probability proportional to the weight xuv

3 remove all tokens at the sink, if any
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Convergence of token diffusion

Theorem (Becchetti, B., Natale, 2018)

The number of tokens Z
(t)
u on node u, as t →∞, satisfies

E
[
Z (t)
u

]
→ Lu,upu

The number of tokens at u can be used to estimate the local node
potential pu

Hence, token diffusion also converges to the correct values

The more “well-connected” the graph is, the faster the convergence
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Fully local explanation: an open problem

The token diffusion process was analyzed for fixed weights

Does everything still work if we couple the diffusion dynamics with
the edge-response dynamics, adapting the weights along the way?

Seems plausible, but no analysis available so far!
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Beyond the network setting

The shortest path problem can be expressed as

min
m∑
j=1

cj |zj |

s.t. Az = b, z ∈ Rm

where A is the signed incidence matrix of the graph

What if A is not a network matrix?

The problem is called an `1-norm regression problem

An important problem in statistics and signal processing
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Solving `1-regression

No network interpretation, but the math still works!
We just ask A to be a full-rank matrix (then L = AWA> is invertible)

We still use the dynamics

ẋ = x

((
|q(x)|
x

)µ
− 1

)
where now q(x) := W (x)A>L−1(x)

Theorem (Straszak-Vishnoi 2016; B. 2019)

When µ = 1 or µ = 2, the dynamics converges to an optimal solution
of the `1-regression problem.

Convergence is often provably fast (see references)
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Problems solved by Physarum dynamics

Undirected Directed
dynamics dynamics

ẋ = |q(x)| − x ẋ = q(x)− x

Network Undirected Directed
setting shortest path shortest path

Algebraic min c> |z | min c>z
setting Az = b Az = b, z ≥ 0

`1-regression Linear programming
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Conclusions

The TKN model achieves optimality only for the response
function ϕ(y) = y

A revised model achieves optimality for any set of standard
response functions

Proved analytically for parallel-links graphs
Proved analytically for any graph if µ ∈ {1, 2}
Supported by simulations for more general topologies

Process can be truly distributed (complete analysis still missing)

A simple generalization of the dynamics can solve the more
general `1-regression problem or even linear programming
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