Computing through Simplicity: Computational Dynamics and Applications

Emanuele Natale

COATI

CEP INRIA Sophia Antipolis 25 June 2019

Research Directions

• Computational Dynamics.

Achieving simplicity in randomized distributed algorithms.

• Biological Distributed Algorithms.

Going into biology and back, through the algorithmic lens (Natural Algorithms).

Natural Algorithms

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

Natural Algorithms

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

How ants perform collective navigattion? How do they decide where to relocate their nest?

Computational **Dynamics**

Anonymous agents

- small set of possible states
- *simple* update function *f*

At each step: Update depends on states of random subset of agents

Dynamics for Plurality Consensus

Plurality Consensus.

- Each agent initially has a value in $\{1, ..., k\}$.
- There is a small initial **bias** (majority 2nd-maj. color).
- Each agent eventually has the most frequent initial value.

Dynamics for Plurality Consensus

Plurality Consensus.

- Each agent initially has a value in $\{1, ..., k\}$.
- There is a small initial **bias** (majority - 2nd-maj. color).
- Each agent eventually has the most frequent initial value.

3-Majority Dynamics.

At each round, each agent samples 3 agents in the system and adopts the majority color.

Theorem.

3-Majority Dynamics converges to plurality in $\mathcal{O}(k \log n)$ rounds

Bias s

Clustering

Minimum Bisection Problem.

Find balanced bipartition $|V_1| = |V_2|$ that minimizes cut.

[Garey et al. '76]: Minimum bisection problem is NP-Complete!

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" $V_1, V_2,$ with $|V_1| = |V_2|.$
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" $V_1, V_2,$ with $|V_1| = |V_2|.$
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

"Reconstruction" problem.

Given graph generated by SBM, find original clusters.

- "Communities" V_1 , V_2 , with $|V_1| = |V_2|$.
- include each edge with probability
 - -p if edge inside V_1 or V_2 ,
 - -q if edge between V_1 and V_2 .

"Reconstruction" problem. Given graph generated by SBM, find original clusters.

Theorem. [Mossel et al. 2012-] Clustering possible **if and only if** p and q in a precise regime.

Clustering with **Averaging Dynamics**

Regular Stochastic Block Model:

Clustering with **Averaging Dynamics**

Why it Works: Intuition

Why it Works: Intuition

Why it Works: Intuition

• Set label to blue if $x^{(t)} < x^{(t-1)}$, red otherwise

Theorem. In Regular Stochastic Block Model with $a - b > \sqrt{2(a + b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Theorem. In Regular Stochastic Block Model with $a - b > \sqrt{2(a + b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Averaging is a **linear** dynamics:

$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

P transition matrix of random walk on *G* and $\mathbf{x}^{(t)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Theorem. In Regular Stochastic Block Model with $a - b > \sqrt{2(a + b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Averaging is a **linear** dynamics: $\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$ *P* transition matrix of random walk on *G* and $\mathbf{x}^{(t)} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ $\mathbf{x}^{(t)} = \frac{1}{\tilde{\Theta}(\sqrt{n})} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \left(\frac{a-b}{a+b} \right)^t \frac{1}{\tilde{\Theta}(\sqrt{n})} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + \mathbf{e}^{(t)} \underbrace{\mathbf{e}^{(t)}_{|\mathbf{0}|}}_{|\mathbf{0}|_{\lambda_2/\lambda_3}}$

Theorem. In Regular Stochastic Block Model with $a - b > \sqrt{2(a + b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_2/\lambda_3}$ steps with high probability.

Averaging is a

Example of Research on Collective Behavior

Recruitment in Desert Ants

Cataglyphis niger needs to recruit nest mates to carry food. Data suggest that they communicate by simple, *stochastic noisy interactions*.

We provide **mathematical evidence** on why stochastic noisy interactions imply *small group size*.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Stochastic Interactions.

At each round, each agent receives a message from another random agent.

Noisy Communication.

Noisy vs Noiseless Broadcast and Consensus

Broadcast. All nodes eventually receive the message of the source.

(Valid) Consensus. All nodes eventually support the value initially supported by one of them.

Reductions and Lower Bounds

Broadcast \implies Consensus **Noiseless** Consensus \implies **Noiseless** (variant of) Broadcast

Noiseless Consensus and Broadcast are "*equivalent*"

Reductions and Lower Bounds

Broadcast \implies Consensus **Noiseless** Consensus \implies **Noiseless** (variant of) Broadcast

Noiseless Consensus and Broadcast are "*equivalent*"

Noisy Broadcast is *exponentially harder* than **Noisy** Consensus

Future Research Directions

- **Computational Dynamics.** Achieving simplicity in randomized distributed algorithms.
- Biological Distributed
 Algorithms.

Going into biology and back, through the algorithmic lens (Natural Algorithms).

Future Research Directions

- **Computational Dynamics.** Achieving simplicity in randomized distributed algorithms.
- Biological Distributed
 Algorithms.

Going into biology and back, through the algorithmic lens (Natural Algorithms).

• Neuromorphic Computing. Theory of neural networks (algorithmic approach to theoretical neuroscience).

Thank You!