Computing through Simplicity: Computational Dynamics and Applications

Emanuele Natale

CEP

INRIA Sophia Antipolis
25 June 2019

Research Directions

- Computational Dynamics. Achieving simplicity in randomized distributed algorithms.
- Biological Distributed Algorithms. Going into biology and back, through the algorithmic lens (Natural Algorithms).

Natural Algorithms

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

Natural Algorithms

How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]

How ants perform collective navigattion? How do they decide where to relocate their nest?

Computational Dynamics

Anonymous agents

- small set of possible states
- simple update function f

At each step:
Update depends on states of random subset of agents

Dynamics for Plurality Consensus

Plurality Consensus.

- Each agent initially has a value in $\{1, \ldots, k\}$.
- There is a small initial bias (majority - 2nd-maj. color).
- Each agent eventually has the most frequent initial value.

Dynamics for Plurality Consensus

Plurality Consensus.

- Each agent initially has a value in $\{1, \ldots, k\}$.
- There is a small initial bias (majority - 2nd-maj. color).
- Each agent eventually has the most frequent initial value.

3-Majority Dynamics.

At each round, each agent samples 3 agents in the system and adopts the majority color.

Theorem.
3-Majority Dynamics converges to plurality in $\mathcal{O}(k \log n)$ rounds

Clustering

Minimum Bisection Problem.
Find balanced bipartition $\left|V_{1}\right|=\left|V_{2}\right|$ that minimizes cut.

[Garey et al. '76]: Minimum bisection problem is NP-Complete!

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with
 probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with
 probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
- q if edge between V_{1} and V_{2}.
"Reconstruction" problem. Given graph generated by SBM, find original clusters.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
- q if edge between V_{1} and V_{2}.
"Reconstruction" problem. Given graph generated by SBM, find original clusters.

Theorem. [Mossel et al. 2012-] Clustering possible if and only if p and q in a precise regime.

Clustering with Averaging Dynamics

Regular Stochastic Block Model:

Clustering with Averaging Dynamics

Regular Stochastic Block Model:

Why it Works: Intuition

Why it Works: Intuition

Why it Works: Intuition

- Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$,
Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$,
Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Averaging is a linear dynamics:

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of random walk on G and $\quad \mathbf{x}^{(t)}=$

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$,
Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Averaging is a linear dynamics:

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of random walk on G and $\mathbf{x}^{(t)}=$ $\mathbf{X}^{(t)}=\frac{1}{\Theta(\sqrt{n})}\left(\begin{array}{c}1 \\ \vdots \\ 1 \\ 1 \\ \vdots \\ 1\end{array}\right)+\left(\frac{a-b}{a+b}\right)^{t} \frac{1}{\Theta(\sqrt{n})}\left(\begin{array}{c}1 \\ \vdots \\ 1 \\ -1 \\ \vdots \\ -1\end{array}\right)+\mathbf{e}^{(t)} \leftarrow \underset{\substack{\text { negligible after } \\ t \gg 1 \\ \log n \\ \log \lambda_{2} / \lambda_{3}}}{\text { and }}$

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Averaging is a linear dynamics:

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of random walk on G and $\mathbf{x}^{(t)}=$

Example of Research on Collective Behavior

Recruitment in Desert Ants

Cataglyphis niger needs to recruit nest mates to carry food.
Data suggest that they communicate by simple, stochastic noisy interactions.
We provide mathematical evidence on why stochastic noisy interactions imply small group size.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy vs Noiseless Broadcast and Consensus

Broadcast. All nodes eventually receive the message of the source.

(Valid) Consensus. All nodes eventually support the value initially supported by one of them.

Reductions and Lower Bounds

Broadcast \Longrightarrow Consensus
Noiseless Consensus
\Longrightarrow Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are "equivalent"

Reductions and Lower Bounds

Broadcast \Longrightarrow Consensus
Noiseless Consensus
\Longrightarrow Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are "equivalent"

Noisy Broadcast is exponentially harder than Noisy Consensus

Future Research Directions

- Computational Dynamics. Achieving simplicity in randomized distributed algorithms.
- Biological Distributed Algorithms.
Going into biology and back, through the algorithmic lens (Natural Algorithms).

Future Research Directions

- Computational Dynamics. Achieving simplicity in randomized distributed algorithms.
- Biological Distributed Algorithms.
Going into biology and back, through the algorithmic lens (Natural Algorithms).

- Neuromorphic Computing. Theory of neural networks (algorithmic approach to theoretical neuroscience).

Thank You!

