From Distributed Computing to Natural Algorithms and Beyond

 Emanuele Natale
UNIVERSITÉ COTTE D'AZUR

Joint work with L. Becchetti, L. Boczkowki, V. Bonifaci, A. Clementi, L. Gualà, A. Korman, O. Feinerman, P. Manurangsi, F. Pasquale, P. Raghavendra, G. Scornavacca, R. Silvestri, L. Trevisan

ICTCS 2019

Como, 08 September 2019

Outline

Pre-CNRS Algorithmic Biography

- 2016 - PhD at Sapienza University, in Theory of Distributed Computing

SAPIENZA Università di Roma

Pre-CNRS Algorithmic Biography

- 2016 - PhD at Sapienza University, in Theory of Distributed Computing
- 2016-now - PostDoc at Max Planck Institute for Informatics D1 - Algorithms \& Complexity

Pre-CNRS Algorithmic Biography

- 2016 - PhD at Sapienza University, in Theory of Distributed Computing
- 2016-now - PostDoc at

Max Planck Institute for Informatics D1-Algorithms \& Complexity

III以II
 max planck institut informatik

- 2016 \& 2018 - Fellow of Simons Institute for the Theory of Computing

institute
for the Theory of Computing

UNIVERSITY OF CALIFORNIA

Part I

Computational Dynamics

Natural Algorithms

How do flocks of birds synchronize their flight?
[Chazelle '09]

Natural Algorithms

How does Physarum polycephalum
How do flocks of birds synchronize their flight? [Chazelle '09]
 finds shortest paths? [Mehlhorn et al. 2012-...]

Natural Algorithms

How does Physarum polycephalum
How do flocks of birds synchronize their flight? [Chazelle '09] finds shortest paths? [Mehlhorn et al. 2012-...]

How ants perform collective navigattion? How do they decide where to relocate their nest?

How can Simple Stochastic Systems Compute?

SYSTEMS

Interacting Particle

Computer
Networks

Distributed
Computing

How can Simple Stochastic Systems Compute?

A computational lens on how global behavior emerges from simple stochastic interactions among individuals

SCIENCES

Computational Dynamics

Anonymous agents

- small set of possible states
- simple update function f

At each step:
Update depends on states of random subset of agents

Dynamics for Plurality Consensus I

Plurality Consensus.

- Each agent initially has a value in $\{1, \ldots, k\}$.
- $\Omega(\sqrt{k n \log n})$ initial bias (majority - 2nd-majority color).
- Each agent eventually has the most frequent initial value.

Dynamics for Plurality Consensus I

Plurality Consensus.

- Each agent initially has a value in $\{1, \ldots, k\}$.
- $\Omega(\sqrt{k n \log n})$ initial bias (majority - 2nd-majority color).
- Each agent eventually has the most frequent initial value.

3-Majority Dynamics.

At each round, each agent samples 3 agents and adopts the majority color.

Theorem.
3-Majority Dynamics converges to plurality in $\mathcal{O}(k \log n)$ rounds

Dynamics for Plurality Consensus II

Undecided-State Dynamics.
Each agent u samples an agent v :

- If v has a different color, u becomes undecided.
- If undecided, u copies the color of v.

Dynamics for Plurality Consensus II

Undecided-State Dynamics. Each agent u samples an agent v :

- If v has a different color, u becomes undecided.
- If undecided, u copies the color of v.

Theorem (Monochromatic Distance).
Undecided-State Dynamics converges to plurality within $\tilde{\Theta}(\operatorname{md}($ initial configuration $))$ rounds with high probability.

Clustering

Minimum Bisection Problem.

Find balanced bipartition $\left|V_{1}\right|=\left|V_{2}\right|$ that minimizes cut.

[Garey et al. '76]: Minimum bisection problem is NP-Complete!

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with
 probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with
 probability
- p if edge inside V_{1} or V_{2},
$-q$ if edge between V_{1} and V_{2}.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
$-p$ if edge inside V_{1} or V_{2},
- q if edge between V_{1} and V_{2}.
"Reconstruction" problem. Given graph generated by SBM, find original clusters.

Stochastic Block Model (SBM)

- "Communities" V_{1}, V_{2}, with $\left|V_{1}\right|=\left|V_{2}\right|$.
- include each edge with probability
- p if edge inside V_{1} or V_{2},
- q if edge between V_{1} and V_{2}.
"Reconstruction" problem. Given graph generated by SBM, find original clusters.

Theorem. [Mossel et al. 2012-] Clustering possible if and only if p and q in a precise regime.

Clustering with Averaging Dynamics

Regular Stochastic Block Model:

Clustering with Averaging Dynamics

Regular Stochastic Block Model:

Why it Works: Intuition

Why it Works: Intuition

Why it Works: Intuition

- Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$,
Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$,
Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Averaging is a linear dynamics:

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of random walk on G and $\quad \mathbf{x}^{(t)}=$

Why It Works: Proof Idea

Theorem. In Regular Stochastic Block Model with $a-b>\sqrt{2(a+b)}$, Averaging Dynamics finds clusters after $\frac{\log n}{\log \lambda_{2} / \lambda_{3}}$ steps with high probability.

Averaging is a linear dynamics:

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of random walk on G and $\mathbf{x}^{(t)}=$

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or -1 . At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or -1 . At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or -1 . At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD):
Each node u initially flips a coin and gets value +1 or -1 . At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Asynchronous Averaging Dynamics

Asynchronous Averaging Dynamics (AAD): Each node u initially flips a coin and gets value +1 or -1 . At each step, an edge $\{u, v\}$ is chosen u.a.r. and u and v average their values.

Theorem. In Regular Stochastic Block Model

- An AAD-based protocol finds clusters in $C_{\lambda_{2}-\lambda_{1}} n\left(\frac{a}{b}+\log n\right)$ with high probability.
- If $\lambda_{2} \ll \frac{\lambda_{3}^{2}}{\log ^{2} n}$, another AAD-based protocol finds clusters after $\mathcal{O}\left(\frac{n}{\lambda_{3}} \log ^{2} n\right)$ steps with high probability.

Part II

Biological Distributed Algorithms

Recruitment in Desert Ants

Cataglyphis niger needs to recruit nest mates to carry food.
Data suggest that ants communicate by simple noisy interactions.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy \& Stochastic Interactions

Stochastic
Interactions.
At each round, each agent receives a message from another random agent.

Noisy
Communication.
Before being received, each bit is flipped with probability $1 / 2-\epsilon_{n}$.

Noisy vs Noiseless Broadcast and Consensus

Broadcast. All nodes eventually receive the message of the source.

(Valid) Consensus. All nodes eventually support the value initially supported by one of them.

Reductions and Lower Bounds

Broadcast \Longrightarrow Consensus
Noiseless Consensus
\Longrightarrow Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are "equivalent"

Reductions and Lower Bounds

Broadcast \Longrightarrow Consensus
Noiseless Consensus
\Longrightarrow Noiseless
(variant of) Broadcast

Noiseless Consensus and Broadcast are "equivalent"

Noisy Broadcast is exponentially harder than Noisy Consensus

Part III

TCS
 and Theoretical
 Neuroscience

The Brain and Computation

Von Neumann, Turing, McCulloch, Pitts, Barlow... were interested in the other field to better understand theirs.

Both fields have exploded in knowledge but have also grown further apart.

Computational Neuroscience: Data

Computational Neuroscience: Theory

Issues:

- Far from experimentalists

THEORETICAL NEUROSCIENCE

Computational and Mathematical Modeling of Neural Systems

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided

THEORETICAL NEUROSCIENCE

Computational and Mathematical Modeling of Neural Systems

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Theories:

THEORETICAL NEUROSCIENCE

Computational and Mathematical Modeling of Neural Systems

- Neural networks for learning: Pitts \& McCulloch ('47), Rosenblatt ('58), Hubel \& Wiesel ('62), ...

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Theories:

- Neural networks for learning: Pitts \& McCulloch ('47), Rosenblatt ('58), Hubel \& Wiesel ('62), ...
- Neural-dynamics model for specific neural phenomena (associative memory, grid cells, place cells, oscillations, ...)

Computational Neuroscience: Theory

Issues:

- Far from experimentalists
- Internally divided
- Led mostly by physicists

Theories:

- Neural networks for learning: Pitts \& McCulloch ('47), Rosenblatt ('58), Hubel \& Wiesel ('62), ...
- Neural-dynamics model for specific neural phenomena (associative memory, grid cells, place cells, oscillations, ...)
- Works from Theoretical Computer Science: Neuroidal Model by Valiant ('94), models of associative memory by Papadimitriou et al, ('15), Lynch et al. ('16) and Navlakha et al. ('17), ...

Does the Brain use Algorithms?

How are you aware of your location in space?

2014 Nobel
Prize in
Physiology to
J. O'Keefe \& M.
B. and E. Moser for discovery of cells that constitute a positioning system in the brain

Neuron 1

Neuron 2

The Principle of Efficiency

The Principle of Efficiency

Grid Cells Encodes Position Efficiently

A Model of Associative Memory

A model of content-addressable associative memory:
Hopfield networks [PNAS '84]
(≈ 8000 citations)

A Model of Associative Memory

A model of content-addressable associative memory:
Hopfield networks [PNAS '84]
(≈ 8000 citations)
Each node v has initial state
$s_{v} \in\{-1,+1\}$
Dynamics.
Pick a node v at random and set

$$
s_{v} \leftarrow \operatorname{sign}\left(\sum_{u} s_{u} w_{u, v}\right)
$$

until changes don't occur anymore

A Model of Associative Memory

A model of content-addressable associative memory:
Hopfield networks [PNAS '84]
(≈ 8000 citations)
Each node v has initial state
$s_{v} \in\{-1,+1\}$
Dynamics.
Pick a node v at random and set

$$
s_{v} \leftarrow \operatorname{sign}\left(\sum_{u} s_{u} w_{u, v}\right)
$$

until changes don't occur anymore

A Model of Associative Memory

A model of content-addressable associative memory:
Hopfield networks [PNAS '84] (≈ 8000 citations)

Each node v has initial state $s_{v} \in\{-1,+1\}$

Dynamics.
Pick a node v at random and set

$$
s_{v} \leftarrow \operatorname{sign}\left(\sum_{u} s_{u} w_{u, v}\right)
$$

until changes don't occur anymore

Convergence to binary N-dimensional vectors $\left\{\mathbf{v}^{(i)}\right\}_{i}$

How to set weights $w_{u, v}$?
Hebbian learning ('49):
$w_{i, j}=\frac{1}{N} \sum_{k}^{N} \mathbf{v}_{i}^{(k)} \mathbf{v}_{j}^{(k)}$
"fire together, wire togheter"

Capacity of Hopfield Networks

How many vectors before errors appear?

Capacity of Hopfield Networks

How many vectors before errors appear?

For random vectors, capacity is $\approx \sqrt{N}$
For structured patterns with other dynamics, capacities are $\approx N, 2^{(\sqrt{n})}, 2^{\mathcal{O} \frac{n}{\log n}}$ (but not robust)

Problem. Exponential capacity $2^{\Omega(n)}$ in Hopfield networks with structured patters?

From Expander Codes to Hopfield Networks

Expander Codes. [Sipser \& Spielman '96]

From Expander Codes to Hopfield Networks

Expander Codes. [Sipser \& Spielman '96]

Three Messages

- Computational Dynamics. Achieving simplicity in randomized distributed algorithms.

- Biological Distributed Algorithms. Investigating Biology through the algorithmic lens (Natural Algorithms).

- Theoretical Neuroscience. Investigating Neuroscience through the algorithmic lens.

Thank You!

