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Electrical Flow in CS and Biology

Computation of currents and voltages in resistive
electrical network is a crucial primitive in many
optimization algorithms

• Maximum flow
– Christiano, Kelner, Madry, Spielman and Teng, STOC’11
– Lee, Rao and Srivastava, STOC’13

• Network sparsification
– Spielman and Srivastava, SIAM J. of Comp. 2011

• Generating spanning trees
– Kelner and Madry, FOCS’09
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Electrical Flow in CS and Biology

Computation of currents and voltages in resistive
electrical network is a crucial primitive in many
optimization algorithms

• Maximum flow
– Christiano, Kelner, Madry, Spielman and Teng, STOC’11
– Lee, Rao and Srivastava, STOC’13

• Network sparsification
– Spielman and Srivastava, SIAM J. of Comp. 2011

• Generating spanning trees
– Kelner and Madry, FOCS’09

and as model of biological computation
• Physarum

polycephalum
• Ants

implicitly solving electrical flow
while forming food-transportation
networks
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Physarum Polycephalum Behavior

• Nakagaki, Yamada and Toth, Nature 2000
• Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007
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Physarum Polycephalum Behavior

• Nakagaki, Yamada and Toth, Nature 2000
• Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007

Physarum polycephalum builds tubes to transport food.
Amount of food flowing in tube determines growth or deterioration.
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Physarum Dynamics as an Algorithm

Dynamics: ẋe = |qe| − xe
xe thickness of segment
qe amount of nutrient flowing
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Physarum Dynamics as an Algorithm

Becchetti, Bonifaci, Dirnberger, Karrenbauer and Mehlhorn
ICALP’13: Discretized physarum computes (1 + ε)-apx.
in O(mL(log n+ logL)/ε3) (m num. of edges, L max. length)

Euler’s discretization:
x(t+ 1)− x(t) = h(|q(t)| − x(t))

Dynamics: ẋe = |qe| − xe
xe thickness of segment
qe amount of nutrient flowing
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Physarum Dynamics as an Algorithm

Becchetti, Bonifaci, Dirnberger, Karrenbauer and Mehlhorn
ICALP’13: Discretized physarum computes (1 + ε)-apx.
in O(mL(log n+ logL)/ε3) (m num. of edges, L max. length)

Euler’s discretization:
x(t+ 1)− x(t) = h(|q(t)| − x(t))

Many sequels in TCS:
Bonifaci, Mehlhorn and Varma SODA’12, Bonifaci IPL’13,
Straszak and Vishnoi ITCS’16, Straszak and Vishnoi
SODA’16, Becker et al. ESA’17, ...

Dynamics: ẋe = |qe| − xe
xe thickness of segment
qe amount of nutrient flowing
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How to Compute with Electrical Networks

Previous approaches: centralized computation

Physarum have to compute the pressures,
i.e. solve Kirchhoff’s equations on nodes:

• edge weights xe/`e (`e length of segment)
• A weighted adjacency matrix
• D diagonal matrix of nodes’ volumes
• L = D −A non-normalized graph laplacian
• b is +1 on source, −1 on sink, 0 elsewhere

Lp = b
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How to Compute with Electrical Networks

Previous approaches: centralized computation

Physarum have to compute the pressures,
i.e. solve Kirchhoff’s equations on nodes:

• edge weights xe/`e (`e length of segment)
• A weighted adjacency matrix
• D diagonal matrix of nodes’ volumes
• L = D −A non-normalized graph laplacian
• b is +1 on source, −1 on sink, 0 elsewhere

Biologically, computation is achieved through a
“microscopic” local process: what is it?

Lp = b
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Randomized Token Diffusion Process

Process [Ma, Johansson, Tero, Nakagaki and Sumpter, ’13]

Estimator

• At the beginning of each step, K new tokens appear
at the source

• Each token independently performs a weighted
random walk at each step

• Each token that hits the sink disappears

V
(t)
K =

Z
(t)
K (u)

K·vol(u) where Z(t)
K (u) number of tokens on u
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Randomized Token Diffusion Process

Process [Ma, Johansson, Tero, Nakagaki and Sumpter, ’13]

Estimator

• At the beginning of each step, K new tokens appear
at the source

• Each token independently performs a weighted
random walk at each step

• Each token that hits the sink disappears

V
(t)
K =

Z
(t)
K (u)

K·vol(u) where Z(t)
K (u) number of tokens on u

Cfr. Doyle and Snell, ’84 & Tetali, ’91:
Times random walk transits on an edge before hitting sink
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Analysis of Random Process

Theorem. In expectation the process converges to a valid
potential with rate

1−
1−

√
1− (θ/volmax)2

2(n− 1)

∑
i

win

win + volmax −
√
vol2max − θ2

where θ is the edge expansion of the graph with sink removed.

• Bound w.r.t. spectral radius of P with row and column of
sink set to zero, then

• relate bound to eigenvalue of non-norm. laplacian of graph
with sink removed, finally

• use known relation to edge expansion.

Proof.
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

Lp = b L′p = bẋe = |qe| − xe ẋe = |qe| − xe

compute
electrical
flow

compute
electrical
flow

update
edges

update
edges
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

• Spectral structure of L′?
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

• Spectral structure of L′?

Lp = b L′p = bẋe = |qe| − xe ẋe = |qe| − xe

• Global convergence time?

compute
electrical
flow

This work
compute
electrical
flow

update
edges

update
edges
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Thank You!
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Distributed Jacobi’s Method

Proof. New analysis of Jacobi’s iterative method exploiting
structure of laplacian.

Thm. Let
p̃(t+ 1) = P p̃(t) +D−1b

where P = D−1A is the transition matrix of graph.
The system converges to a valid potential with rate

‖e⊥ (t)‖≤
√

volmax

volmin

√
2φ

t
‖e⊥(0)‖

where e⊥(t) is the component of the error orthogonal to 1 and
φ is the graph conductance.
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The Slime Mold Physarum Polycephalum

Ma, Johansson, Tero, Nakagaki
and Sumpter, J. of the Royal
Society Interface ’13
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Message Complexity and Stochastic Accuracy

∗ X gives (ε, δ)-approximation of Y if P (|X − Y | > εY ) ≤ δ.

Lemma. For any K, 0 < ε, δ < 1, t and u,
such that p(t)u ≥ 3

ε2Kvol(u) ln
2
δ , the estimator

provides an (ε, δ)-approximation∗ of p(t)u .

Vice versa. (ε, δ)-approximation of the potentials p(t)u greater
than p(t)? is achieved by setting K ≥ 3

ε2p
(t)
? vol(u)

ln 2
δ .

Proofs. Chernoff bound requires Y >
3 ln 1

δ

ε2 .

Lemma. As t→∞, the expected message complexity per
round of Token Diffusion Algorithm is O(K n volmax ·E), where
E = pᵀLp is the energy of the electrical flow.
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