Consensus needs Broadcast in Noiseless Models but can be Exponentially Easier in the Presence of Noise

Emanuele Natale

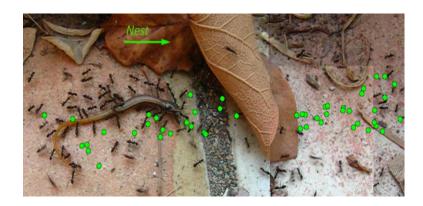
Joint work with A. Clementi, L. Gualà, F. Pasquale, G. Scornavacca and L. Trevisan

Natural Algorithms

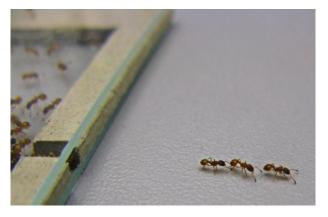
How do flocks of birds synchronize their flight? [Chazelle '09]

 $\begin{array}{c} \alpha_2 \\ \alpha_1 \\ \end{array}$

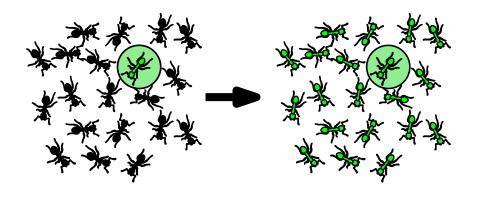
How does Physarum polycephalum finds shortest paths? [Mehlhorn et al. 2012-...]



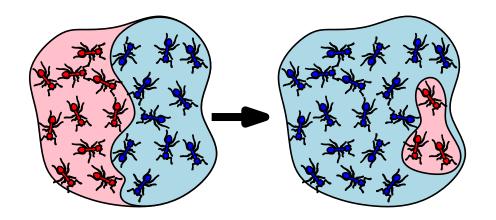
How ants perform collective navigattion? How do they decide where to relocate their nest?



Noisy vs Noiseless Broadcast and Consensus



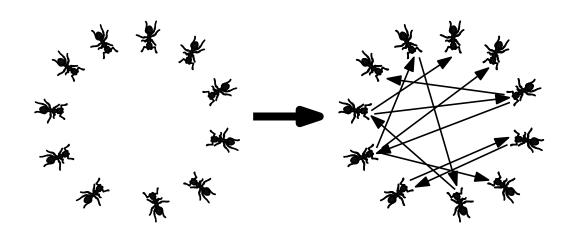
Broadcast. All agents eventually receive the message of the source.



(Valid) δ -Consensus. All agents but a fraction δ , eventually support the value initially supported by one of them.

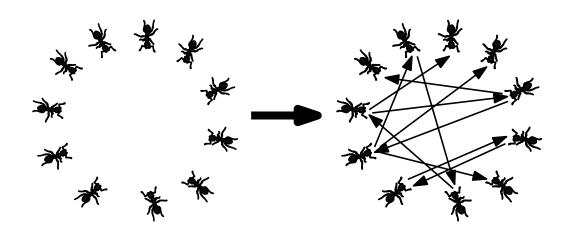
Stochastic Interactions.

At each round, each agent receives a message from another random agent.

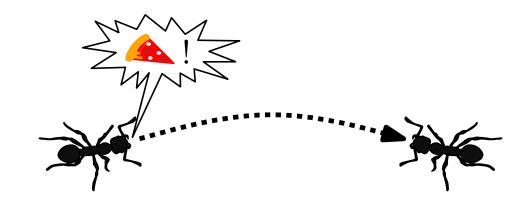


Stochastic Interactions.

At each round, each agent receives a message from another random agent.

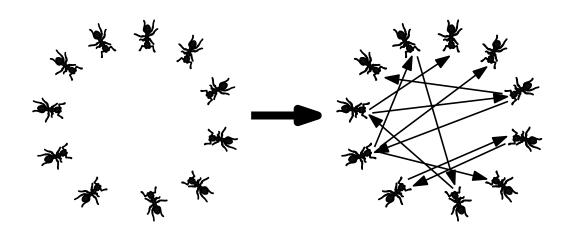


Noisy Communication.

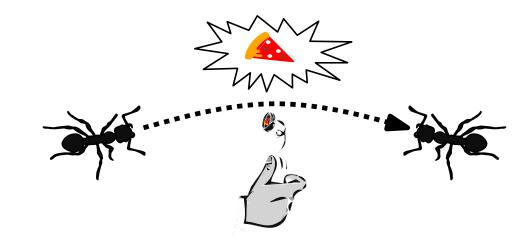


Stochastic Interactions.

At each round, each agent receives a message from another random agent.

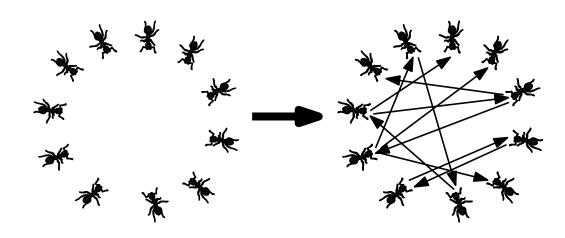


Noisy Communication.

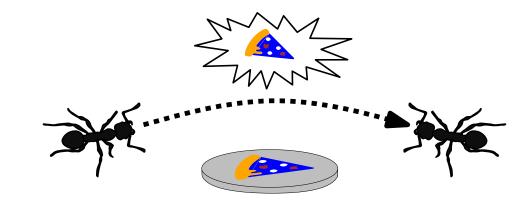


Stochastic Interactions.

At each round, each agent receives a message from another random agent.

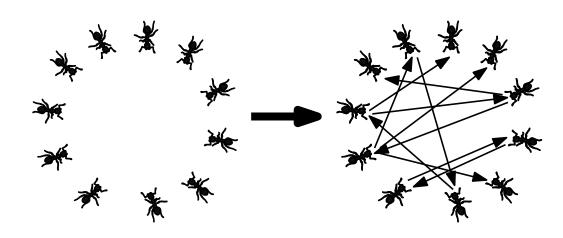


Noisy Communication.

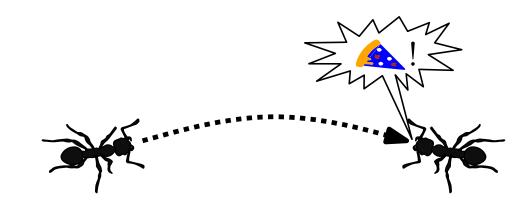


Stochastic Interactions.

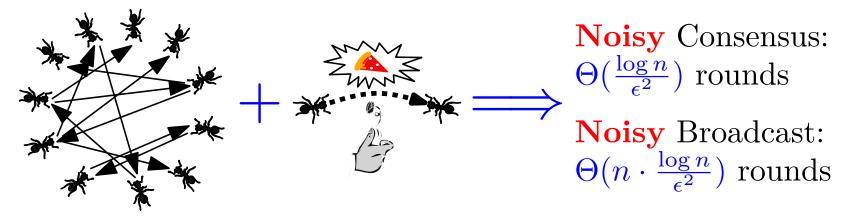
At each round, each agent receives a message from another random agent.



Noisy Communication.

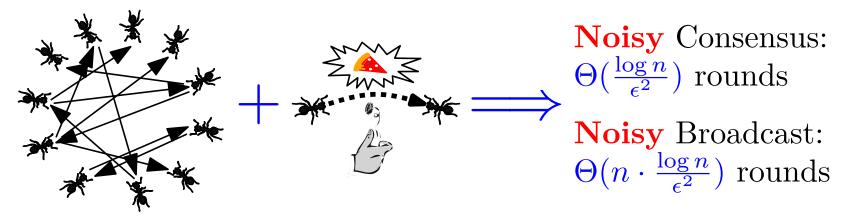


Lower Bounds and Reductions



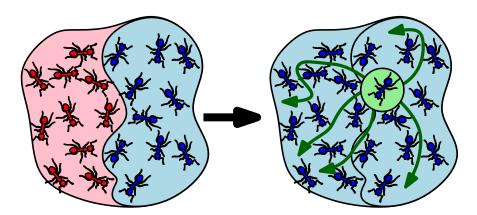
Noisy Broadcast is *exponentially harder* than **Noisy** Consensus

Lower Bounds and Reductions



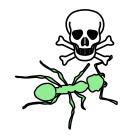
Noisy Broadcast is *exponentially harder* than **Noisy** Consensus

Broadcast \implies Consensus **Noiseless** Consensus \implies **Noiseless** (variant of) Broadcast

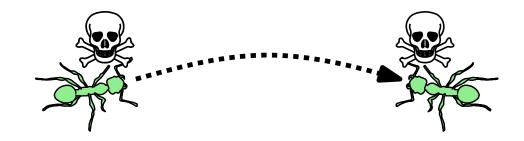


Noiseless Consensus and Broadcast are "*equivalent*"

Def. Given agent s, we call an agent infected if it is s or it receives any message from an infected agent. Protocol \mathcal{P} is δ -infective w.r.t. s if *infects* all but a fraction δ of agents.



Def. Given agent s, we call an agent infected if it is s or it receives any message from an infected agent. Protocol \mathcal{P} is δ -infective w.r.t. s if *infects* all but a fraction δ of agents.



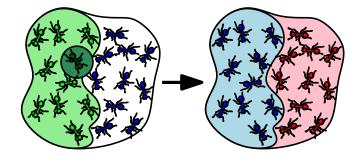
Def. Given agent s, we call an agent infected if it is s or it receives any message from an infected agent. Protocol \mathcal{P} is δ -infective w.r.t. s if *infects* all but a fraction δ of agents.

Thm. Let \mathcal{P} be a δ -consensus protocol with probability 1 - o(1/n). There is an agent s and initial inputs to agents such that \mathcal{P} is $(1 - 2\delta)$ -infective with probability $\geq 1/(2n)$.

Def. Given agent s, we call an agent infected if it is s or it receives any message from an infected agent. Protocol \mathcal{P} is δ -infective w.r.t. s if *infects* all but a fraction δ of agents.

Thm. Let \mathcal{P} be a δ -consensus protocol with probability 1 - o(1/n). There is an agent *s* and initial inputs to agents such that \mathcal{P} is $(1 - 2\delta)$ -infective with probability $\geq 1/(2n)$.

Corollary. Let \mathcal{T} be a resource of the distributed system S. If no protocol can infect more than $(1 - 2\delta)$ fraction of agents with high probability, w.r.t. any source, without exceeding t_b units of \mathcal{T} , then any δ -consensus protocol with high probability must exceed t_b .



$$x_k = (\underbrace{0, ..., 0}_k, 1..., 1)$$

1. Label nodes $v_1, ..., v_n$. x_k is initial configuration with $v_1, ..., v_k$ having input 0, while others have input 1.

$$x_k = (\underbrace{0, ..., 0}_k, 1..., 1)$$

2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .

$$x_k = (\underbrace{0, ..., 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$

$$x_k = (\underbrace{0, \dots, 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$

$$x_k = (\underbrace{0, \dots, 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$
- 5. $\exists k : \mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \ge \frac{1 o(1)}{n}$

$$x_k = (\underbrace{0, \dots, 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$
- 5. $\exists k : \mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \ge \frac{1 o(1)}{n}$
- 6. $\mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \le P(Z_k = 1 \land Z_{k+1} = 0)$

1. Label nodes $v_1, ..., v_n$. x_k is initial configuration with $v_1, ..., v_k$ having input 0, while others have input 1.

$$x_k = (\underbrace{0, \dots, 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$
- 5. $\exists k : \mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \ge \frac{1 o(1)}{n}$
- 6. $\mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \le P(Z_k = 1 \land Z_{k+1} = 0)$
- 7. S =protocol succeeds,

 $I_{k+1} =$ infected agents w.r.t. v_{k+1}

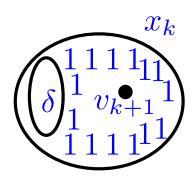
1. Label nodes $v_1, ..., v_n$. x_k is initial configuration with $v_1, ..., v_k$ having input 0, while others have input 1.

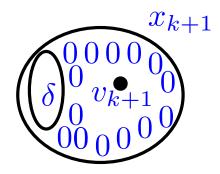
$$x_k = (\underbrace{0, ..., 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$
- 5. $\exists k : \mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \ge \frac{1 o(1)}{n}$
- 6. $\mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \le P(Z_k = 1 \land Z_{k+1} = 0)$
- 7. S =protocol succeeds,

 $I_{k+1} =$ infected agents w.r.t. v_{k+1}

8. $Z_k = 1 \wedge Z_{k+1} = 0 \wedge \mathcal{S} \implies |I_{k+1}| > (1 - 2\delta)n$



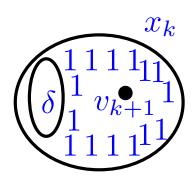


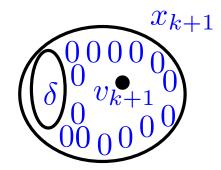
1. Label nodes $v_1, ..., v_n$. x_k is initial configuration with $v_1, ..., v_k$ having input 0, while others have input 1.

$$x_k = (\underbrace{0, \dots, 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$
- 5. $\exists k : \mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \ge \frac{1 o(1)}{n}$
- 6. $\mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \le P(Z_k = 1 \land Z_{k+1} = 0)$
- 7. S =protocol succeeds,
 - $I_{k+1} =$ infected agents w.r.t. v_{k+1}
- 8. $Z_k = 1 \wedge Z_{k+1} = 0 \wedge \mathcal{S} \implies |I_{k+1}| > (1 2\delta)n$

(5-6.) $\frac{1-o(1)}{n} \leq \mathbb{E}[Z_k] - \mathbb{E}[Z_{k+1}] \leq P(Z_k = 1 \land Z_{k+1} = 0)$





1. Label nodes $v_1, ..., v_n$. x_k is initial configuration with $v_1, ..., v_k$ having input 0, while others have input 1.

$$x_k = (\underbrace{0, \dots, 0}_k, 1..., 1)$$

- 2. $Z_i = 1$ iff δ -consensus is reached on 1 starting from x_i .
- **3.** $\mathbb{E}[Z_0] \ge 1 o(1/n)$ and $\mathbb{E}[Z_n] = o(1/n)$
- 4. $1 o(1/n) \le \mathbb{E}[Z_0 Z_n] = \sum_{i=0}^{n-1} \mathbb{E}[Z_i] \mathbb{E}[Z_{i+1}]$
- 5. $\exists k : \mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \ge \frac{1 o(1)}{n}$
- 6. $\mathbb{E}[Z_k] \mathbb{E}[Z_{k+1}] \le P(Z_k = 1 \land Z_{k+1} = 0)$
- 7. S =protocol succeeds,
 - I_{k+1} = infected agents w.r.t. v_{k+1}
- 8. $Z_k = 1 \wedge Z_{k+1} = 0 \wedge \mathcal{S} \implies |I_{k+1}| > (1 2\delta)n$

(5-6.) $\frac{1-o(1)}{n} \leq \mathbb{E}[Z_k] - \mathbb{E}[Z_{k+1}] \leq P(Z_k = 1 \land Z_{k+1} = 0)$

9. $\leq P(\neg \mathcal{S} \lor |I_{k+1}| > (1-2\delta)n) \leq o(1/n) + P(|I_{k+1}| > (1-2\delta)n)$

