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Electrical Networks for Optimization

Computation of currents and voltages in resistive
electrical network is a crucial primitive in many
optimization algorithms

• Maximum flow
– Christiano, Kelner, Madry, Spielman and Teng, STOC’11
– Lee, Rao and Srivastava, STOC’13

• Network sparsification
– Spielman and Srivastava, SIAM J. of Comp. 2011

• Generating spanning trees
– Kelner and Madry, FOCS’09
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Computation of currents and voltages in resistive
electrical network is a crucial primitive in many
optimization algorithms

• Maximum flow
– Christiano, Kelner, Madry, Spielman and Teng, STOC’11
– Lee, Rao and Srivastava, STOC’13

• Network sparsification
– Spielman and Srivastava, SIAM J. of Comp. 2011

• Generating spanning trees
– Kelner and Madry, FOCS’09

and as model of biological computation
• Physarum

polycephalum
• Ants

implicitly solving electrical flow
while forming food-transportation
networks
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Physarum Polycephalum Behavior

• Nakagaki, Yamada and Toth, Nature 2000
• Tero, Kobayashi and Nakagaki J. of Theo. Bio. 2007

Physarum polycephalum builds tubes to transport food.
Amount of food flowing in tube determines growth or deterioration.
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Physarum Polycephalum Dynamics

For each edge e and node u

• `e length
• xe thickness (conductivity)
• qe food flow (current)
• re = `e/xe resistance to flow

Dynamics: ẋe = |qe| − xe
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∀cycle u1, ..., u`,∑
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Physarum Polycephalum Dynamics

• Flows relates to pressures by
q(u,v) = (pu − pv)/re
(Ohm’s law)

• there are pressures p(u):
∀cycle u1, ..., u`,∑
i(p(ui+1)− p(ui)) = 0

(Kirchhoff potential law)

For each edge e and node u

• `e length
• xe thickness (conductivity)
• qe food flow (current)
• re = `e/xe resistance to flow

• flow conservation:∑
v∼u q(u,v) = b(u)

(Kirchhoff current law)
• there are demands b(u):

– 1 on source,
– -1 on sink,
– 0 o/w

Dynamics: ẋe = |qe| − xe
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Physarum Dynamics as an Algorithm

Bonifaci, Mehlhorn and Varma SODA’12:
Physarum dynamics converges on all graphs
(elegant proof in Bonifaci IPL’13)
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(elegant proof in Bonifaci IPL’13)

Becchetti, Bonifaci, Dirnberger, Karrenbauer and Mehlhorn
ICALP’13:
Discretized physarum computes (1 + ε)-apx.
in O(mL(log n+ logL)/ε3)

Euler’s discretization

x(t+ 1)− x(t) = h(|q(t)| − x(t))
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Physarum Dynamics as an Algorithm

Bonifaci, Mehlhorn and Varma SODA’12:
Physarum dynamics converges on all graphs
(elegant proof in Bonifaci IPL’13)

Becchetti, Bonifaci, Dirnberger, Karrenbauer and Mehlhorn
ICALP’13:
Discretized physarum computes (1 + ε)-apx.
in O(mL(log n+ logL)/ε3)

Euler’s discretization

x(t+ 1)− x(t) = h(|q(t)| − x(t))

Many sequels in TCS:
Bonifaci IPL’13, Straszak and Vishnoi ITCS’16, Straszak and
Vishnoi SODA’16, Becker et al. ESA’17, ...
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How to Compute with Electrical Networks

or

Physarum have to solve Kirchhoff’s equations∑
v∼u q(u,v) =

∑
v∼u(pu − pv)/re = b(u)

• edge’s weight xe/`e
• D diagonal matrix of nodes’ volumes
• A weighted adjacency matrix
• L = D −A

Lp = b
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How to Compute with Electrical Networks

or

Previous approaches: centralized computation

Physarum have to solve Kirchhoff’s equations∑
v∼u q(u,v) =

∑
v∼u(pu − pv)/re = b(u)

• edge’s weight xe/`e
• D diagonal matrix of nodes’ volumes
• A weighted adjacency matrix
• L = D −A

- Can be accomplished if every node is agent that follows
elementary protocol?
(biologically: what happens microscopically?)
- If yes, what is convergence time and communication
overhead?

Lp = b
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Distributed Jacobi’s Method

Jacobi’s iterative method (Varga, 2009):
Bound on convergence rate w.r.t. graph conductance
exploiting structure of laplacian
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Distributed Jacobi’s Method

Jacobi’s iterative method (Varga, 2009):

Lp = (D −A)p = b =⇒ p = D−1Ap+D−1b

Jacobi’s: p̃(t+ 1) = P p̃(t) + b

Bound on convergence rate w.r.t. graph conductance
exploiting structure of laplacian

P

{

Jacobi’s matrix =
transition matrix
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Distributed Jacobi’s Method

Jacobi’s iterative method (Varga, 2009):

Lp = (D −A)p = b =⇒ p = D−1Ap+D−1b

Jacobi’s: p̃(t+ 1) = P p̃(t) + b

Bound on convergence rate w.r.t. graph conductance
exploiting structure of laplacian

Error e(t) = p− p̃(t) = e⊥(t) + α1
(p doesn’t care about α: L1 = 0!)

Lp = (D −A)p = b =⇒ p = D−1Ap+D−1b

P

{

Jacobi’s matrix =
transition matrix
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Analysis of Deterministic Process

The new error is e⊥(t+ 1) = Pe⊥(t)− (α(t+ 1)− α(t))1
thus e⊥(t) =

(
I − 1

n11
ᵀ
)
P te⊥(0).
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The new error is e⊥(t+ 1) = Pe⊥(t)− (α(t+ 1)− α(t))1
thus e⊥(t) =

(
I − 1

n11
ᵀ
)
P te⊥(0).

P = D−1A is similar to N = D−1/2AD−1/2.
Thus

P t = (D−1A)t = (D−
1
2ND

1
2 )t = D−

1
2N tD

1
2 .

Observe that
• N has n orthonormal eigenvec. ~x1, . . . , ~xn, corresponding

to eigenvectors ~y1, . . . , ~yn of P via ~xi = D1/2~yi for each i.
• Both ~xi and ~yi, for each i, are associated to the same

eigenvalue ρi of P .
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Analysis of Deterministic Process

Conductance by Cheeger’s inequality

‖e⊥ (t)‖≤
√
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volmin
max(|ρ2|, |ρn|)t ‖e⊥(0)‖
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Randomized Token Diffusion Process

Doyle and Snell, ’84 & Tetali, ’91:
Times a random walk transits through given edge
until hitting the sink
- global requirement
- no accuracy and msg. complexity bounds

source sinkgraph graph
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Randomized Token Diffusion Process

Our’s:
How many tokens are on a node
- local requirement
- accuracy and msg. complexity w.r.t. edge expansion

Doyle and Snell, ’84 & Tetali, ’91:
Times a random walk transits through given edge
until hitting the sink
- global requirement
- no accuracy and msg. complexity bounds

source sinkgraph graph
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Randomized Token Diffusion Process

Process

Estimator

• At the beginning of each step, K new tokens appear
at the source

• Each token independently performs a weighted
random walk at each step

• Each token that hits the sink disappears

V
(t)
K =

Z
(t)
K (u)

K·vol(u) where Z(t)
K (u) number of tokens on u
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Randomized Token Diffusion Process

Process

Estimator

• At the beginning of each step, K new tokens appear
at the source

• Each token independently performs a weighted
random walk at each step

• Each token that hits the sink disappears

V
(t)
K =

Z
(t)
K (u)

K·vol(u) where Z(t)
K (u) number of tokens on u

Lemma. Let E[V (t)
K (u)] = (p(t))u, then{
p(0) = ~0,

p(t+1) = P p(t) +D−1b,

with P and b obtained by zeroing out entries on row and
column of sink.
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Analysis of Random Process

Lemma. The spectral radius of P , ρ, satisfies ρ =
1−

∑n
i=1 vi ·Pi,sink/‖v1‖, where ~v1 is left Perron eigenvector of P .

Theorem. System above converges to a valid potential with rate ρ.
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1−

∑n
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Theorem. 1− ρ ≥ λ2

2volmax(n−1)
∑
i

win
win+λ2

where λ2 is 2nd smallest eigenvalue of non-normalized laplacian
of graph with sink removed.

Connecting with edge expansion:
it is known
λ2(G) ≥ volmax − (vol2max − θ(G)2)1/2.
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Analysis of Random Process

Lemma. The spectral radius of P , ρ, satisfies ρ =
1−

∑n
i=1 vi ·Pi,sink/‖v1‖, where ~v1 is left Perron eigenvector of P .

Theorem. System above converges to a valid potential with rate ρ.

Remark. As t→∞, the expected message complexity per
round of Token Diffusion Algorithm is O(K n volmax ·E), where
E = pᵀLp is the energy of the electrical flow.

Theorem. 1− ρ ≥ λ2

2volmax(n−1)
∑
i

win
win+λ2

where λ2 is 2nd smallest eigenvalue of non-normalized laplacian
of graph with sink removed.

Connecting with edge expansion:
it is known
λ2(G) ≥ volmax − (vol2max − θ(G)2)1/2.
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

Lp = b L′p = bẋe = |qe| − xe ẋe = |qe| − xe

compute
electrical
flow

compute
electrical
flow

update
edges

update
edges
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Open Problem: Analysis of Distributed Physarum?

Physarum dynamics et sim.:
Compute electrical flow, then update edge-weigths

• Spectral structure of L′?

Lp = b L′p = bẋe = |qe| − xe ẋe = |qe| − xe

• Global convergence time?

compute
electrical
flow

This work
compute
electrical
flow

update
edges

update
edges
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Thank You!
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Stochastic Accuracy

X gives (ε, δ)-approximation of Y if P (|X − Y | > εY ) ≤ δ.

Lemma. For any K, 0 < ε, δ < 1, t and u, such that
p
(t)
u ≥ 3

ε2Kvol(u) ln
2
δ , the estimator provides an

(ε, δ)-approximation of p(t)u .

Vice versa. (ε, δ)-approximation of the potentials p(t)u greater
than p(t)? is achieved by setting K ≥ 3

ε2p
(t)
? vol(u)

ln 2
δ .

Proofs. Chernoff bound requires Y >
3 ln 1

δ

ε2 .
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The Slime Mold Physarum Polycephalum

Ma, Johansson, Tero, Nakagaki
and Sumpter, J. of the Royal
Society Interface ’13
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