Find Your Place: Simple Distributed Algorithms for Community Detection

Emanuele Natale ${ }^{\diamond}$
joint work with
Luca Becchetti ${ }^{\dagger}$, Andrea Clementi*, Francesco Pasquale* and Luca Trevisan*

SAPIENZA
Università di Roma

* UNIVERSITA' DEGLI STUDI DI ROMA

UTorvergata

IIITIIT

ACM-SIAM Symposium on Discrete Algorithms 16-19 January 2017 - Barcellona, Spain

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

3-Median dyn.
[Doerr et al. '11]

\bigcirc

Undecided-state dyn.
[Becchetti et al. '14, '16] [Becchetti et al. '15]

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

3-Median dyn.
[Doerr et al. '11]

Undecided-state dyn.
[Becchetti et al. '14, '16] [Becchetti et al. '15]

Can dynamics solve a problem non-trivial in centralized setting?

Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with n nodes.
Output: $S=\arg \min _{S \subset V} E(S, V-S)$.

$$
|S|=n / 2
$$

[Garey, Johnson, Stockmeyer '76]:
Min-Bisection is NP-Complete.

The Stochastic Block Model

Stochastic Block Model (SBM). Two "communities" of equal size V_{1} and V_{2}, each edge inside a community included with probability p, each edge across communities included with probability $q<p$.

The Stochastic Block Model

Reconstruction problem:

Given graph generated by SBM,

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

2-regular bipartite

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

2-regular bipartite

When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- $a-b>2 \sqrt{a+b}$ in SBM (weak)
- $a-b>2(\sqrt{a}-\sqrt{b}) \sqrt{b}+2 \log n$ in SBM (strong)
- $a-b>2 \sqrt{a+b-1}$ in Regular SBM (strong)

Upper bounds obtained by linearizations of Belief Propagation, advanced spectral methods (power and Lanczos method), SDP.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors, 2. Set label to blue if

$$
\begin{aligned}
& x^{(t)}<x^{(t-1)}, \text { red } \\
& \text { otherwise. }
\end{aligned}
$$

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if

$$
\begin{aligned}
& x^{(t)}<x^{(t-1)}, \text { red } \\
& \text { otherwise. }
\end{aligned}
$$

Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{$ blue, red $\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.
P transition matrix of simple random walk on the graph

Averaging is a linear dynamics

$$
\mathbf{x}^{(t)}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{$ blue, red $\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.
P transition matrix of simple random walk on the graph

Averaging is a linear dynamics

$$
\mathbf{x}^{(t)}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
\bullet
\end{array}\right)
$$

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

Bottleneck of mixing time for spectral methods:
Distributed computation of second eigenvector [Kempe \& McSherry '08]: $\mathcal{O}\left(\tau_{\text {mix }} \log ^{2} n\right)$.
$\lambda_{2}(P) \approx \frac{a-b}{a+b} \Longrightarrow$ mixing time of a random walk on $\mathcal{G}_{n, p, q}$ is $\geq \frac{1}{1-\lambda_{2}} \approx \frac{a+b}{2 b}$.

Our Results

Our Results

Our Results

Let's say nodes are in the same community if their distance is at least $\epsilon \ldots$

- How to set ϵ ?
- Not a global clustering.

Our Results

Our Results

Our Results

random walk matrix P :

$$
v_{1}=\mathbb{1}=(1, \ldots, 1)
$$

$$
v_{2} \approx \chi=(1, \ldots, 1,-1, \ldots,-1)
$$

Our Results

(Informal) Theorem. $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t. i) $\chi=\mathbf{1}_{V_{1}}-\mathbf{1}_{V_{2}}$ close to right-eigenvector of eigenvalue λ_{2} of transition matrix of G, and
ii) gap between λ_{2} and $\lambda=\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}$ sufficiently large, then
Averaging (approximately) identifies $\left(V_{1}, V_{2}\right)$.
Above conditions are met w.h.p. if

- in Regular SBM, $a-b>2 \sqrt{a+b-1}$
(Strong reconstruction)
- in SBM, if $a-b>\sqrt{(a+b) \log n}$ and $b>\frac{\log n}{n^{2}}$ $\left(\mathcal{O}\left(\frac{(a+b) \log n}{(a-b)^{2}}\right)\right.$-weak reconstruction.)

Analysis: Roadmap

Strong reconstruction on "clustered" regular graphs

Strong reconstruction on Regular SBM
$\mathcal{O}\left(\frac{(a+b) \log n}{(a-b)^{2}}\right)$-weak reconstruction on SBM

Analysis: Roadmap

Strong reconstruction on "clustered" regular graphs

Strong reconstruction on Regular SBM

$$
\begin{aligned}
& \text { weak reconst. on } \\
& \text { clustered graphs }
\end{aligned}
$$

$\mathcal{O}\left(\frac{(a+b) \log n}{(a-b)^{2}}\right)$-weak reconstruction on SBM
$\mathcal{O}\left(\frac{(a+b)}{(a-b)^{2}}\right)$-weak reconstruction on SBM

Strong reconstruction on "clustered" regular graphs

Analysis on Regular SBM

$$
P \longrightarrow \begin{aligned}
& \text { symmetric } \Longrightarrow \text { orthonormal } \\
& \text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { and real } \\
& \text { eigenvalues } \lambda_{1}, \ldots, \lambda_{n} .
\end{aligned}
$$

Analysis on Regular SBM

symmetric \Longrightarrow orthonormal
$P \longrightarrow$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

$$
\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}
$$

Analysis on Regular SBM

symmetric \Longrightarrow orthonormal $P \longrightarrow$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1}$
Regular $\mathrm{SBM} \Longrightarrow P \chi=\left(\frac{a-b}{a+b}\right) \cdot \chi$

Analysis on Regular SBM

$$
P \longrightarrow \begin{aligned}
& \text { symmetric } \Longrightarrow \text { orthonormal } \\
& \text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { and real } \\
& \\
& \text { eigenvalues } \lambda_{1}, \ldots, \lambda_{n} .
\end{aligned}
$$

$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1}$
Regular SBM $\Longrightarrow P \chi=\left(\frac{a-b}{a+b}\right) \cdot \chi$

$$
\frac{1}{a+b}\left(\begin{array}{c:c}
\ldots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\cdots a "_{1} "_{s} \cdots & \cdots b "_{1} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\hdashline \cdots \cdot \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\cdots b "_{s} "_{\mathrm{s}} \cdots & \cdots a "_{1} "_{\mathrm{s}} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)=\frac{a-b}{a+b}\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)
$$

Analysis on Regular SBM

symmetric \Longrightarrow orthonormal $P \longrightarrow$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1}$
Regular $\mathrm{SBM} \Longrightarrow P \chi=\left(\frac{a-b}{a+b}\right) \cdot \chi$
W.h.p. $\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}(1+\delta)<\frac{a-b}{a+b}=\lambda_{2}$, then

$$
\mathbf{x}^{(t+1)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

with $\left\|\mathbf{e}^{(t)}\right\| \leq\left(\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}\right)^{t} \sqrt{n}$

Analysis on Regular SBM

$\frac{1}{n} \sum_{u \in V} \mathbf{x}^{(0)}(u)$W.h.p. $\max \left\{\lambda_{3},\left\|\lambda_{n}\right\|\right\}(1-\delta)<\frac{a-b}{a+b}=\lambda_{2}$, then$\mathbf{x}^{(t+1)}=\frac{1}{n}\left(1^{\top} \mathbf{x}^{(0)}\right) 1+\lambda_{2}^{\frac{1}{2}} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}$	

with $\left\|\mathbf{e}^{(t)}\right\| \leq\left(\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}\right)^{t} \sqrt{n}$

Analysis on Regular SBM

$$
\mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

Analysis on Regular SBM

$$
\begin{gathered}
\mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
\mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}_{\ll \lambda_{2}^{t-1} \text { if } t=\Omega(\log n)}
\end{gathered}
$$

Analysis on Regular SBM

$$
\begin{aligned}
& \mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}_{\ll \lambda_{2}^{t-1} \text { if } t=\Omega(\log n)} \\
& \operatorname{sign}\left(\mathbf{x}^{(t)}(u)-\mathbf{x}^{(t-1)}(u)\right) \propto \operatorname{sign}(\chi(u))
\end{aligned}
$$

Future Work: Sparsification

At each round, pick an edge u.a.r.
(population protocols):
those two nodes averages their values.
Simulations. Does not seem to work for $a-b \ll \log n$.

Analysis. A version with $\log n$ parallel instances (say two nodes are in same community only iff at least a certain fraction of instances agree), works for $a-b \gg \log ^{\Theta(1)} n$.

Thank You!

