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Dynamics
Dynamics: For every graph, agent and round, states are updated
according to fixed rule of current state and symmetric function of
states of neighbors.
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Dynamics: For every graph, agent and round, states are updated
according to fixed rule of current state and symmetric function of
states of neighbors.

Examples of Dynamics:
3-Median dyn.
[Doerr et al. ’11]
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Can dynamics solve a problem non-trivial in centralized setting?

=⇒
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[Becchetti et al. ’15]



Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with n nodes.
Output: S = arg min

S⊂V
|S|=n/2

E(S, V − S).

[Garey, Johnson, Stockmeyer ’76]:
Min-Bisection is NP-Complete.



The Stochastic Block Model

Stochastic Block Model (SBM). Two
“communities” of equal size V1 and V2, each edge
inside a community included with probability p,
each edge across communities included with
probability q < p.

q
p p



The Stochastic Block Model

Reconstruction problem:
Given graph generated by SBM,

qp p∼

find original partition



Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al.
SODA’16]. A graph G = (V1

⋃̇
V2, E) s.t.

• |V1| = |V2|,
• G

∣∣
V1

, G
∣∣
V2
∼ random a-regular graphs

• G
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E(V1,V2) ∼ random b-regular bipartite graph.
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When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]:
Reconstruction is possible iff
• a− b > 2

√
a+ b in SBM (weak)

• a− b > 2(
√
a−
√
b)
√
b+ 2 logn in SBM (strong)

• a− b > 2
√
a+ b− 1 in Regular SBM (strong)

Upper bounds obtained by linearizations of Belief
Propagation, advanced spectral methods (power and
Lanczos method), SDP.



The Average Dynamics

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {+1, -1}.
• Then, at each round

1. Set value x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.
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Properties of the Averaging Dynamics

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {blue, red}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

P transition matrix of simple
random walk on the graph

Averaging
is a linear
dynamics

x(t) =

x(t) = P · x(t−1) = P t · x(0)

( )



Properties of the Averaging Dynamics

Al nodes at the same time:
• At t = 0, randomly pick

value x(t) ∈ {blue, red}.
• Then, at each round

1. Set color x(t) to
average of neighbors,

2. Set label to blue if
x(t) < x(t−1), red
otherwise.

P transition matrix of simple
random walk on the graph

Averaging
is a linear
dynamics

x(t) =

Bottleneck of mixing time for spectral methods:
Distributed computation of second eigenvector
[Kempe & McSherry ’08]: O(τmix log2 n).

x(t) = P · x(t−1) = P t · x(0)

( )

λ2(P ) ≈ a−b
a+b =⇒ mixing time of a random

walk on Gn,p,q is ≥ 1
1−λ2

≈ a+b
2b .
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Let’s say nodes are in the same community if their
distance is at least ε...
• How to set ε?
• Not a global clustering.
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t
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+1

· · ·
α
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e

x(∞) = α ≈ 1
n

∑
v xv

v1, ..., vn eigenvectors of
random walk matrix P :
v1 = 1 = (1, ..., 1)
v2 ≈ χ = (1, ..., 1,−1, ...,−1)

“nice”
graph



Our Results

(Informal) Theorem. G = (V1
⋃̇
V2, E) s.t.

i) χ = 1V1 − 1V2 close to right-eigenvector of
eigenvalue λ2 of transition matrix of G, and
ii) gap between λ2 and λ = max{λ3, |λn|}
sufficiently large, then
Averaging (approximately) identifies (V1, V2).

Above conditions are met w.h.p. if

• in SBM, if a− b >
√

(a+ b) logn and b > logn
n2

(O
( (a+b) logn

(a−b)2

)
-weak reconstruction.)

• in Regular SBM, a− b > 2
√
a+ b− 1

(Strong reconstruction)



Analysis: Roadmap
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Analysis on Regular SBM

P
symmetric =⇒ orthonormal
eigenvectors v1, ...,vn and real
eigenvalues λ1, ..., λn.
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x(t) = 1
n

(1ᵀx(0))1 + λt2
1
n

(χᵀx(0))χ+ e(t)

x(t)−x(t−1) = (χᵀx(0))λt−1
2 (λ2−1)χ+ e(t) − e(t−1)︸ ︷︷ ︸

�λt−1
2 if t=Ω(logn)

sign(x(t)(u)− x(t−1)(u)) ∝ sign(χ(u))



Future Work: Sparsification

At each round, pick an edge u.a.r.
(population protocols):
those two nodes averages their values.

Simulations. Does not seem to work for
a− b� logn.

Analysis. A version with logn parallel instances
(say two nodes are in same community only iff at
least a certain fraction of instances agree), works for
a− b� logΘ(1) n.
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You!


	Find Your Place\\
Simple Distributed Algorithms for Community Detection
	Dynamics
	Community Detection as Minimum Bisection
	The Stochastic Block Model
	Regular Stochastic Block Model
	When is Reconstruction Possible?
	The Average Dynamics
	Properties of the Averaging Dynamics
	Our Results
	Analysis: Roadmap
	Analysis on Regular SBM
	Future Work: Sparsification
	The End

