Find Your Place: Simple Distributed Algorithms for Community Detection

Emanuele Natale^{\$} joint work with Luca Becchetti[†], Andrea Clementi^{*}, Francesco Pasquale^{*} and Luca Trevisan^{*}

ACM-SIAM Symposium on Discrete Algorithms 16-19 January 2017 - Barcellona, Spain

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Can dynamics solve a problem non-trivial in centralized setting?

Community Detection as Minimum Bisection

Minimum Bisection Problem. Input: a graph G with n nodes. Output: $S = \arg \min_{\substack{S \subset V \\ |S| = n/2}} E(S, V - S).$

[Garey, Johnson, Stockmeyer '76]: **Min-Bisection** is *NP-Complete*.

The Stochastic Block Model

Stochastic Block Model (SBM). Two "communities" of equal size V_1 and V_2 , each edge inside a community included with probability p, each edge across communities included with probability q < p.

The Stochastic Block Model

Reconstruction problem: Given graph generated by SBM,

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|$, • $G|_{V_1}, G|_{V_2} \sim \text{random } a\text{-regular graphs}$
- $G|_{E(V_1,V_2)} \sim \text{random } b\text{-regular bipartite graph.}$

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- $G|_{V_1}, G|_{V_2} \sim \text{random } a\text{-regular graphs}$
- $G|_{E(V_1,V_2)} \sim \text{random } b\text{-regular bipartite graph.}$

2-regular bipartite

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- $G|_{V_1}, G|_{V_2} \sim \text{random } a\text{-regular graphs}$
- $G|_{E(V_1,V_2)} \sim \text{random } b\text{-regular bipartite graph.}$

When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- $a b > 2\sqrt{a + b}$ in SBM (weak)
- $a b > 2(\sqrt{a} \sqrt{b})\sqrt{b} + 2\log n$ in SBM (strong)
- $a b > 2\sqrt{a + b 1}$ in Regular SBM (strong)

Upper bounds obtained by linearizations of *Belief Propagation*, advanced spectral methods (power and Lanczos method), SDP.

Properties of the Averaging Dynamics

Al nodes at the same time:

- At t = 0, randomly pick value $x^{(t)} \in \{ blue, red \}$.
- Then, at each round
 1. Set color x^(t) to average of neighbors,
 2. Set label to blue if
 - $x^{(t)} < x^{(t-1)}, \, \mathbf{red}$

otherwise.

P transition matrix of simple random walk on the graph

Averaging is a **linear** dynamics

 $\mathbf{x}^{(t)} = \begin{bmatrix} \bullet \\ \bigcirc \\ \bullet \end{bmatrix}$

$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

Properties of the Averaging Dynamics

Al nodes at the same time:

- At t = 0, randomly pick value $x^{(t)} \in \{ blue, red \}$.
- Then, at each round
 1. Set color x^(t) to average of neighbors,
 2. Set label to blue if x^(t) < x^(t-1), red

otherwise.

P transition matrix of simple random walk on the graph

Averaging is a **linear** dynamics

 $\mathbf{x}^{(t)} =$

$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

Bottleneck of mixing time for spectral methods: $Distributed \ computation \ of \ second \ eigenvector$ [Kempe & McSherry '08]: $\mathcal{O}(\tau_{mix} \log^2 n)$.

 $\lambda_2(P) \approx \frac{a-b}{a+b} \implies \text{mixing time of a random}$ walk on $\mathcal{G}_{n,p,q}$ is $\geq \frac{1}{1-\lambda_2} \approx \frac{a+b}{2b}$.

Let's say nodes are in the same community if their distance is at least ϵ ...

- How to set ϵ ?
- Not a global clustering.

(Informal) Theorem. $G = (V_1 \bigcup V_2, E)$ s.t. i) $\chi = \mathbf{1}_{V_1} - \mathbf{1}_{V_2}$ close to right-eigenvector of eigenvalue λ_2 of transition matrix of G, and ii) gap between λ_2 and $\lambda = \max\{\lambda_3, |\lambda_n|\}$ sufficiently large, then Averaging (approximately) identifies (V_1, V_2) .

Above conditions are met w.h.p. if

- in Regular SBM, $a b > 2\sqrt{a + b 1}$ (Strong reconstruction)
- in SBM, if $a b > \sqrt{(a+b)\log n}$ and $b > \frac{\log n}{n^2}$ $\left(\mathcal{O}\left(\frac{(a+b)\log n}{(a-b)^2}\right)$ -weak reconstruction.)

Analysis: Roadmap

Analysis: Roadmap

 $P \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, ..., \mathbf{v}_n \text{ and real} \\ \text{eigenvalues } \lambda_1, ..., \lambda_n.$

 $P \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, \dots, \mathbf{v}_n \text{ and real} \\ \text{eigenvalues } \lambda_1, \dots, \lambda_n.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $P \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, ..., \mathbf{v}_n \text{ and real} \\ \text{eigenvalues } \lambda_1, ..., \lambda_n.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $\mathbf{v}_1 = \frac{1}{\sqrt{n}} \mathbf{1}$

Regular SBM $\implies P\chi = \left(\frac{a-b}{a+b}\right) \cdot \chi$

 $P \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, ..., \mathbf{v}_n \text{ and real} \\ \text{eigenvalues } \lambda_1, ..., \lambda_n.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $\mathbf{v}_1 = \frac{1}{\sqrt{n}} \mathbf{1}$

Regular SBM $\implies P\chi = \left(\frac{a-b}{a+b}\right) \cdot \chi$

 $P \longrightarrow \text{eigenvectors } \mathbf{v}_1, ..., \mathbf{v}_n \text{ and real}$ eigenvalues $\lambda_1, ..., \lambda_n$.

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $\mathbf{v}_{1} = \frac{1}{\sqrt{n}} \mathbf{1}$ Regular SBM $\implies P\chi = \left(\frac{a-b}{a+b}\right) \cdot \chi$ W.h.p. $\max\{\lambda_{3}, |\lambda_{n}|\}(1+\delta) < \frac{a-b}{a+b} = \lambda_{2}$, then $\mathbf{x}^{(t+1)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_{2}^{t} \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$ with $\|\mathbf{e}^{(t)}\| \le (\max\{\lambda_{3}, |\lambda_{n}|\})^{t} \sqrt{n}$

with $\|\mathbf{e}^{(t)}\| \leq (\max\{\lambda_3, |\lambda_n|\})^t \sqrt{n}$

$$\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$$

$$\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$$

$$\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)} = (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \lambda_2^{t-1} (\lambda_2 - 1) \chi + \underbrace{\mathbf{e}^{(t)} - \mathbf{e}^{(t-1)}}_{\ll \lambda_2^{t-1} \text{ if } t = \Omega(\log n)}$$

$$\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$$

$$\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)} = (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \lambda_2^{t-1} (\lambda_2 - 1) \chi + \underbrace{\mathbf{e}^{(t)} - \mathbf{e}^{(t-1)}}_{\ll \lambda_2^{t-1} \text{ if } t = \Omega(\log n)}$$

 $\operatorname{sign}(\mathbf{x}^{(t)}(u) - \mathbf{x}^{(t-1)}(u)) \propto \operatorname{sign}(\chi(u))$

Future Work: Sparsification

At each round, pick an edge u.a.r. (*population protocols*): those two nodes averages their values.

Simulations. Does not seem to work for $a - b \ll \log n$.

Analysis. A version with $\log n$ parallel instances (say two nodes are in same community only iff at least a certain fraction of instances agree), works for $a - b \gg \log^{\Theta(1)} n$.

Thank You!