Community Detection in Population Protocols

Emanuele Natale

joint work with L. Becchetti¹, A. Clementi², F. Pasquale², P. Raghavendra³ and L. Trevisan³ (¹ Sapienza U.R., ² U.R. Tor Vergata, ³ UC Berkeley)

Population protocols At each round a random edge is chosen and the two corresponding agents interact.

Regular Stochastic Block Model A graph $G = (V_1 \bigcup V_2, E)$ s.t. $|V_1| = |V_2|$, $G|_{V_1}, G|_{V_2} \sim$ random *a*-regular graphs, $G|_{E(V_1, V_2)} \sim$ random *b*-regular bipartite graph.

Theorem

 $G = (V_1 \bigcup V_2, E)$ Regular Stochastic Block Model s.t. $(a + b)\epsilon^4 \gg b \log^2 n$, then w.h.p. CSL(m, T) with $m = \Theta(\epsilon^{-1} \log n)$ and $T = \Theta(\log n)$ labels all nodes but a set Uwith size $|U| \leq \sqrt{\epsilon n}$, in such a way that

- nodes' labels in the same community agree on at least 5/6 of entries, and
- nodes' labels in different communities differ in more than 1/6 of entries.

Reconstruction problem

Given graph generated by Regular Stochastic Block Model, find original partition.

$$\begin{array}{c} {\color{black} {oldsymbol{C}} {oldsymbol{S}} {oldsymbol{S}} {oldsymbol{L}} {oldsymbol{L}} {oldsymbol{L}} {oldsymbol{M}} {oldsymbol{M$$

• At the outset $\mathbf{x}_u^{(0)} \sim \text{Unif}(\{-1,+1\}^m)$.

• In each round, the endpoints of the random edge choose a random index $j \in [m]$ and set $\mathbf{x}_u(j) = \mathbf{x}_v(j) = \frac{\mathbf{x}_u(j) + \mathbf{x}_v(j)}{2};$

• At the *T*-th update of *j*-th component, u sets $\mathbf{h}_u(j) = \mathbf{sgn}(\mathbf{x}_u(j)).$

A Taste of Spectral Analysis

