Friend or Foe?
 Population Protocols can perform Community Detection

Emanuele Natale ${ }^{\diamond}$

joint work with
Luca Becchetti ${ }^{\dagger}$, Andrea Clementi^, Francesco Pasquale ${ }^{\star}$, Prasad Raghavendra* and Luca Trevisan*

IRIF Algorithms and Complexity seminar
DERECHERCHE EN INIORMATIQUE
I:ONDAMENTALE

Communication in Simple Systems

SYSTEMS

Computer
Networks

Statistical
Mechanics
SCIENCES

Communication in Simple Systems

SYSTEMS
cting Particle Systems

Statistical
Mechanics

Opportunistic Computer
Networks

Networks

SCIENCES

Communication in Simple Systems

DNA/Molecular Computing, Programmable Matter, Swarms of Simple Robots

SYSTEMS

Statistical
Mechanics

Opportunistic Computer Networks

Distributed Computing

SCIENCES

Communication in Simple Systems

Schools of fish
[Sumpter et al. '08]

Insects colonies [Franks et al. '02]

Flocks of birds
[Ben-Shahar et al. '10]
-

SYSTEMS

Computer

IENCES

Dynamics

₹ Very simple distributed algorithms: For every graph, . agent and round, states are updated according to
Ξ fixed rule of current state and symmetric function of states of neighbors.

Dynamics

ส Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics

Dynamics

(ᄌ) Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 3-Majority dynamics

Dynamics

제 Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 3-Majority dynamics
- Undecided-state dynamics

Dynamics

제 Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 3-Majority dynamics
- Undecided-state dynamics
- Averaging dynamics

The Power of Dynamics: Plurality Consensus

Computing the Median

- 3-Median dynamics [Doerr et al. '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p., even if $\mathcal{O}(\sqrt{n})$ states are arbitrarily changed at each round $(\mathcal{O}(\sqrt{n})$-bounded adversary).

Computing the Majority

- 3-Majority dynamics [SPAA '14, SODA '16]. If plurality has bias $\mathcal{O}(\sqrt{k n \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n / k})$-bounded adversary. Without bias, converges
 in poly (k). h-majority converges in $\Omega\left(k / h^{2}\right)$.
- Undecided-State dynamics [SODA '15]. If majority/second-majority ($c_{m a j} / c_{2^{n d}}{ }^{m a j}$) is at least $1+\epsilon$, system converges to plurality within
 $\tilde{\Theta}\left(\sum_{i=1}^{k}\left(c_{i}^{(0)} / c_{m a j}^{(0)}\right)^{2}\right)$ rounds w.h.p.

The Median, the Mode and... the Mean

Dynamics can solve Consensus, Median, Majority, in robust and fault tolerant ways, but this is trivial in centralized setting.

The Median, the Mode and... the Mean

Dynamics can solve Consensus, Median, Majority, in robust and fault tolerant ways, but this is trivial in centralized setting.

Can dynamics solve a problem non-trivial in centralized setting?

Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with $2 n$ nodes.
Output: $S=\arg \min _{\substack{S \subset V \\|S|=n}} E(S, V-S)$.

[Garey, Johnson, Stockmeyer '76]:
Min-Bisection is NP-Complete.

The Stochastic Block Model

Stochastic Block Model (SBM). Two
"communities" of equal size V_{1} and V_{2}, each edge inside a community included with probability
$p=\frac{a}{n}$, each edge across communities included with probability $q=\frac{b}{n}<p$.

The Stochastic Block Model

Reconstruction problem. Given graph generated by SBM, find original partition.

The Stochastic Block Model

Reconstruction problem. Given graph generated by SBM, find original partition.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors,

2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors,

2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors,

2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors,

2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors,

2. Set label to blue if

$$
\begin{aligned}
& x^{(t)}<x^{(t-1)}, \text { red } \\
& \text { otherwise. }
\end{aligned}
$$

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round 1. Set value $x^{(t)}$ to average of neighbors,

2. Set label to blue if

$$
\begin{aligned}
& x^{(t)}<x^{(t-1)}, \text { red } \\
& \text { otherwise. }
\end{aligned}
$$

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

Well studied process [Shah '09]:

- Converges to (weighted) global average of initial values,
- Convergence time $=$ mixing time of G,
- Important applications in fault-tolerant self-stabilizing consensus.

The Averaging Dynamics in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ Model

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

Averaging is a linear dynamics

Well studied process [Shah '09]:

- Converges to (weighted) global average of initial values,
- Convergence time $=$ mixing time of G,
- Important applications in fault-tolerant self-stabilizing consensus.

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of random walk

Community Detection via Averaging Dynamics

Local view of a node:

Who are my friends?

Community Detection via Averaging Dynamics

Local view of a node:

Irregular case:

- outliers?
- no neighbors in the other community?

Community Detection via Averaging Dynamics

Community Detection via Averaging Dynamics

Community Detection via Averaging Dynamics

[SODA $\left.{ }^{\prime} 17\right]$ (Informal). $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t. i) $\chi=\mathbf{1}_{V_{1}}-\mathbf{1}_{V_{2}}$ close to right-eigenvector of eigenvalue λ_{2} of transition matrix of G, and
ii) gap between λ_{2} and $\lambda=\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}$ sufficiently large, then Averaging (approximately) identifies $\left(V_{1}, V_{2}\right)$.

Toy Case: Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

Toy Case: Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \dot{\bigcup} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

2-regular bipartite

Toy Case: Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

2-regular bipartite

Analysis on Regular SBM

$$
P \longrightarrow \begin{aligned}
& \text { symmetric } \Longrightarrow \quad \text { orthonormal } \\
& \text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { and real } \\
& \text { eigenvalues } \lambda_{1}, \ldots, \lambda_{n} .
\end{aligned}
$$

Analysis on Regular SBM

$$
\begin{aligned}
P & \begin{array}{l}
\text { symmetric } \Longrightarrow \begin{array}{c}
\text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { and real } \\
\text { eigenvalues } \lambda_{1}, \ldots, \lambda_{n}
\end{array} \\
\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}
\end{array}
\end{aligned}
$$

Analysis on Regular SBM

$$
\begin{gathered}
P \longrightarrow \begin{array}{l}
\text { symmetric } \Longrightarrow \begin{array}{l}
\text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { and real } \\
\text { eigenvalues } \lambda_{1}, \ldots, \lambda_{n}
\end{array} \\
\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i} \\
\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1} \text { with (largest) eigenvalue } 1
\end{array} .
\end{gathered}
$$

Analysis on Regular SBM

symmetric \Longrightarrow orthonormal $P \longrightarrow$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1}$ with (largest) eigenvalue 1
Regular $\mathrm{SBM} \Longrightarrow P \frac{1}{\sqrt{n}} \chi=\left(\frac{a-b}{a+b}\right) \cdot \frac{1}{\sqrt{n}} \chi$

$$
\frac{1}{a+b}\left(\begin{array}{c:c}
\ldots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\cdots a "_{1} "_{s} \cdots & \cdots b "_{1} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\hdashline \cdots \cdot \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\cdots b "_{s} "_{\mathrm{s}} \cdots & \cdots a "_{1} "_{\mathrm{s}} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)=\frac{a-b}{a+b}\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)
$$

Analysis on Regular SBM

symmetric \Longrightarrow orthonormal $P \longrightarrow$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1}$ with (largest) eigenvalue 1
Regular $\mathrm{SBM} \Longrightarrow P \frac{1}{\sqrt{n}} \chi=\left(\frac{a-b}{a+b}\right) \cdot \frac{1}{\sqrt{n}} \chi$
W.h.p. $\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}(1+\delta)<\frac{a-b}{a+b}=\lambda_{2}$, then

$$
\mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\left(\frac{a-b}{a+b}\right)^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

with $\left\|\mathbf{e}^{(t)}\right\| \leq\left(\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}\right)^{t} \sqrt{n}$

Analysis on Regular SBM

with $\left\|\mathbf{e}^{(t)}\right\| \leq\left(\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}\right)^{t} \sqrt{n}$

Analysis on Regular SBM

$$
\mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+(\underbrace{\frac{a-b}{a+b}}_{=\lambda_{2}})^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

Analysis on Regular SBM

$$
\begin{aligned}
& \mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+(\underbrace{\frac{a-b}{a+b}}_{=\lambda_{2}})^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}_{t=\Omega(\log n)}^{(t)}-\mathbf{e}^{(t-1)}}_{o\left(\lambda_{2}^{t}\right) \text { if }}
\end{aligned}
$$

Analysis on Regular SBM

$$
\begin{aligned}
& \mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+(\underbrace{\frac{a-b}{a+b}}_{=\lambda_{2}})^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}_{o\left(\lambda_{2}^{t}\right) \text { if } t=\Omega(\log n)}
\end{aligned}
$$

$$
\operatorname{sign}\left(\mathbf{x}^{(t)}(u)-\mathbf{x}^{(t-1)}(u)\right) \propto \operatorname{sign}(\chi(u))
$$

Sparsification of the Averaging Dynamics

Averaging Dynamics in $\mathcal{L O C A L}$ Model:
$\mathcal{O}(d)$ messages per round :-(

Sparsification of the Averaging Dynamics

Averaging Dynamics in $\mathcal{L O C A L}$ Model:
$\mathcal{O}(d)$ messages per round :-(
Can we sparsify the process?
\Longrightarrow Do averaging only over some random edges.

Sparsification of the Averaging Dynamics

Averaging Dynamics in $\mathcal{L O C A L}$ Model:
$\mathcal{O}(d)$ messages per round :-(
Can we sparsify the process?
\Longrightarrow Do averaging only over some random edges.

$$
\mathbf{x}^{(t)}=P_{\text {Random matrices! }}^{P^{(t)}} \cdot \mathbf{x}^{(t-1)}={\underset{\uparrow}{(t)} \cdots \cdots P^{(1)} \cdot \mathbf{x}^{(0)}}_{\substack{(0)}}
$$

Sparsification of the Averaging Dynamics

Averaging Dynamics in $\mathcal{L O C A L}$ Model:
$\mathcal{O}(d)$ messages per round :-(
Can we sparsify the process?
\Longrightarrow Do averaging only over some random edges.

Expected behavior:

$$
\mathbf{E}\left[\mathbf{x}^{(t)} \mid \mathbf{x}^{(0)}\right]=\mathbf{E}[P] \cdot \mathbf{E}\left[\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(0)}\right]=(\mathbf{E}[P])^{t} \cdot \mathbf{x}^{(0)}
$$

Sparsification of the Averaging Dynamics

Averaging Dynamics in $\mathcal{L O C A L}$ Model:
$\mathcal{O}(d)$ messages per round :-(
Can we sparsify the process?
\Longrightarrow Do averaging only over some random edges.

$$
\mathbf{x}^{(t)}=P_{\text {Random matrices! }}^{P^{(t)}} \cdot \mathbf{x}^{(t-1)}={\underset{\uparrow}{(t)} \cdots \cdots P^{(1)} \cdot \mathbf{x}^{(0)}}^{P^{(0)}}
$$

Expected behavior:
$\mathbf{E}\left[\mathbf{x}^{(t)} \mid \mathbf{x}^{(0)}\right]=\mathbf{E}[P] \cdot \mathbf{E}\left[\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(0)}\right]=(\mathbf{E}[P])^{t} \cdot \mathbf{x}^{(0)}$
Problem: no concentration tools for matrix products (e.g. no logarithm for noncommutative matrices)

Communication Model: Population Protocol

Population protocol: at each round a random edge is chosen and the two corresponding agent interact.

Communication Model: Population Protocol

Population protocol: at each round a random edge is chosen and the two corresponding agent interact.

Communication Model: Population Protocol

Population protocol: at each round a random edge is chosen and the two corresponding agent interact.

Communication Model: Population Protocol

Population protocol: at each round a random edge is chosen and the two corresponding agent interact.

Communication Model: Population Protocol

Population protocol: at each round a random edge is chosen and the two corresponding agent interact.

Communication Model: Population Protocol

Population protocol: at each round a random edge is chosen and the two corresponding agent interact.

!!!: The variance of picking a random edge breaks the monotonicity and seems to prevent concentration.

Community Sensitive Labeling

$\operatorname{CSL}(m, T)$:

- At the outset

$$
\mathbf{x}_{u}^{(0)} \sim \operatorname{Unif}\left(\{-1,+1\}^{m}\right)
$$

- In each round, the endpoints of the random edge choose a random index $j \in[m]$ and set

$$
\mathbf{x}_{u}(j)=\mathbf{x}_{v}(j)=\frac{\mathbf{x}_{u}(j)+\mathbf{x}_{v}(j)}{2} ; \quad \text { (cfr [Boyd et al. '06]). }
$$

- At the T-th update of j-th component, u sets $\mathbf{h}_{u}(j)=\operatorname{sgn}\left(\mathbf{x}_{u}(j)\right)$.

Community Sensitive Labeling

$\operatorname{CSL}(m, T)$:

- At the outset

$$
\mathbf{x}_{u}^{(0)} \sim \operatorname{Unif}\left(\{-1,+1\}^{m}\right)
$$

- In each round, the endpoints of the random edge choose a random index $j \in[m]$ and set

$$
\mathbf{x}_{u}(j)=\mathbf{x}_{v}(j)=\frac{\mathbf{x}_{u}(j)+\mathbf{x}_{v}(j)}{2} ; \quad(\text { cfr [Boyd et al. '06]). }
$$

- At the T-th update of j-th component, u sets $\mathbf{h}_{u}(j)=\boldsymbol{\operatorname { s g n }}\left(\mathbf{x}_{u}(j)\right)$.

Thm. $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ regular SBM s.t. $d \epsilon^{4} \gg b \log ^{2} n$, then $\operatorname{CSL}(m, T)$ with $m=\Theta\left(\epsilon^{-1} \log n\right)$ and $T=\Theta(\log n)$ labels all nodes but a set U with size $|U| \leq \sqrt{\epsilon} n$, in such a way that

- the labels of nodes in the same community agree on at least 5/6 entries, and
- the labels of nodes in different communities differ in more than $1 / 6$ entries.

Community Sensitive Labeling

Example:
>2 different labels
\Longrightarrow foes!
≤ 2 different labels
\Longrightarrow friends!

Warning: not a dynamics!

Analysis 1/4

Proof Ingredient 1. We are done if, for any fixed component j, all lucky nodes $u \notin U$ are such that

$$
\operatorname{Pr}\left(h_{u}=\operatorname{sgn}\left(\sum_{v \in V(u)} \mathbf{x}_{v}\right)\right) \geq \frac{99}{100} .
$$

Analysis 1/4

Proof Ingredient 1. We are done if, for any fixed component j, all lucky nodes $u \notin U$ are such that

$$
\begin{gathered}
\operatorname{Pr}(h_{u}=\operatorname{sgn}(\underbrace{\left.\sum_{v \in V(u)} \mathbf{x}_{v}\right)}) \geq \frac{99}{100} . \\
\mathbf{x}_{u}^{(0)} \sim \operatorname{Unif}(\{-1,+1\}) .
\end{gathered}
$$

$$
\operatorname{Pr}\left(\sum_{v \in V_{1}} \mathbf{x}_{v}^{(0)}>0>\sum_{v \in V_{2}} \mathbf{x}_{v}^{(0)}\right) \approx \frac{1}{2}
$$

Analysis $1 / 4$

Proof Ingredient 1. We are done if, for any fixed component j, all lucky nodes $u \notin U$ are such that

$$
\begin{gathered}
\operatorname{Pr}(h_{u}=\operatorname{sgn}(\underbrace{\left.\sum_{v \in V(u)} \mathbf{x}_{v}\right)}) \geq \frac{99}{100} \\
\mathbf{x}_{u}^{(0)} \sim \operatorname{Unif}(\{-1,+1\}) .
\end{gathered}
$$

$\operatorname{Pr}\left(\sum_{v \in V_{1}} \mathbf{x}_{v}^{(0)}>0>\sum_{v \in V_{2}} \mathbf{x}_{v}^{(0)}\right) \approx \frac{1}{2}$
(Obs. $\left.\operatorname{Pr}\left(\left|\sum_{v \in V_{i}} \mathbf{x}_{v}^{(0)}\right|<n^{\epsilon}\right) \ll \frac{n^{\epsilon}}{\sqrt{n}}\right)$

Analysis 1/4

Proof Ingredient 1. We are done if, for any fixed component j, all lucky nodes $u \notin U$ are such that sign of \mathbf{x}_{u} at (local) time T

$$
\begin{gathered}
\operatorname{Pr}(h_{u}=\operatorname{sgn}(\underbrace{\left.\sum_{v \in V(u)} \mathbf{x}_{v}\right)}) \geq \frac{99}{100} . \\
\mathbf{x}_{u}^{(0)} \sim \operatorname{Unif}(\{-1,+1\}) .
\end{gathered}
$$

$$
\operatorname{Pr}\left(\sum_{v \in V_{1}} \mathbf{x}_{v}^{(0)}>0>\sum_{v \in V_{2}} \mathbf{x}_{v}^{(0)}\right) \approx \frac{1}{2}
$$

$$
\text { (Obs. } \left.\operatorname{Pr}\left(\left|\sum_{v \in V_{i}} \mathbf{x}_{v}^{(0)}\right|<n^{\epsilon}\right) \ll \frac{n^{\epsilon}}{\sqrt{n}}\right)
$$

Problem: bound $|U|=\#$ unlucky nodes
(i.e. $\operatorname{sgn}\left(\mathbf{x}_{u}^{(T)}\right)$ is wrong with prob. $\left.>1 / 100\right)$.

Analysis 2/4

Proof Ingredient 2. h_{u} is a random variable!
\Longrightarrow Synchronicity issue, cannot union bound...

Analysis 2/4

Proof Ingredient 2. h_{u} is a random variable! \Longrightarrow Synchronicity issue, cannot union bound...
W.h.p. T happens in (global) time $\Theta(n \log n)$.

Analysis 2/4

Proof Ingredient 2. h_{u} is a random variable!
\Longrightarrow Synchronicity issue, cannot union bound...
W.h.p. T happens in (global) time $\Theta(n \log n)$.
\Longrightarrow if for any $t=\Theta(n \log n)$ we prove
$\approx \epsilon^{2} n$ nodes u are bad, namely

$$
\left(\mathbf{x}_{u}^{(t)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}>\frac{\epsilon^{2}}{n}
$$

then we can bound the unlucky nodes by bounding a spreading process:

- At time $10 n \log n, \approx \epsilon^{2} n$ nodes are bad/unlucky, and
- at each following round, a good node become bad iff we pick a cross edge or an edge touching a bad node.

Analysis 2/4

Proof Ingredient 2. h_{u} is a random variable!
\Longrightarrow Synchronicity issue, cannot union bound...
W.h.p. T happens in (global) time $\Theta(n \log n)$.
\Longrightarrow if for any $t=\Theta(n \log n)$ we prove

$\approx \epsilon^{2} n$ nodes u are bad, namely

$$
\left(\mathbf{x}_{u}^{(t)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}>\frac{\epsilon^{2}}{n}
$$

then we can bound the unlucky nodes by bounding a spreading process:

- At time $10 n \log n, \approx \epsilon^{2} n$ nodes are bad/unlucky, and
- at each following round, a good node become bad iff we pick a cross edge or an edge touching a bad node.

Analysis (3-)4/4: Second Moment Analysis

Proof Ingredient 3. If $\sum_{u}\left(\mathbf{x}_{u}^{(10 n \log n)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}$ is small (Ingredient 4), it remains small for $\mathcal{O}(n \log n)$ rounds.

Analysis (3-)4/4: Second Moment Analysis

Proof Ingredient 3. If $\sum_{u}\left(\mathbf{x}_{u}^{(10 n \log n)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}$ is small (Ingredient 4), it remains small for $\mathcal{O}(n \log n)$ rounds.
(Essentially triangle and Markov ineq.s on Ingredient 4.)

Analysis (3-)4/4: Second Moment Analysis

Proof Ingredient 3. If $\sum_{u}\left(\mathbf{x}_{u}^{(10 n \log n)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}$ is small (Ingredient 4), it remains small for $\mathcal{O}(n \log n)$ rounds.
(Essentially triangle and Markov ineq.s on Ingredient 4.)
Proof Ingredient 4. Use Markov ineq. on

$$
\begin{aligned}
& \mathbf{E}\left[\sum_{u}\left(\mathbf{x}_{u}^{(t)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}\right] \\
& =\mathbf{E}\left[\left\|\mathbf{x}^{(t)}-\pi_{\mathbf{v}_{1,2}}\left(\mathbf{x}^{(0)}\right)\right\|^{2}\right] \\
& =\mathbf{E}\left[\left\|\pi_{\mathbf{v}_{22}}\left(\mathbf{x}_{u}^{(t)}\right)-\pi_{\mathbf{v}_{2}}\left(\mathbf{x}_{u}^{(0)}\right)\right\|^{2}\right] \\
& \leq \mathbf{E}\left[\left\|\prod P^{(i)} \pi_{\mathbf{v}_{2}}\left(\mathbf{x}_{u}^{(t)}\right)-\pi_{\mathbf{v}_{2}}\left(\mathbf{x}_{u}^{(0)}\right)\right\|^{2}\right] \\
& +\mathbf{E}\left[\left\|\prod P^{(i)} \pi_{\mathbf{v} \geq 3}\left(\mathbf{x}_{u}^{(0)}\right)\right\|^{2}\right] . \\
& \pi_{\mathbf{v}_{i}}(\mathrm{x}) \text { projection } \\
& \text { on } i \text {-th eigenspace } \\
& P^{(i)} \text { matrix of } \\
& \text { averaging at time } i
\end{aligned}
$$

Analysis (3-)4/4: Second Moment Analysis

Proof Ingredient 3. If $\sum_{u}\left(\mathbf{x}_{u}^{(10 n \log n)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}$ is small (Ingredient 4), it remains small for $\mathcal{O}(n \log n)$ rounds.
(Essentially triangle and Markov ineq.s on Ingredient 4.)
Proof Ingredient 4. Use Markov ineq. on

$$
\begin{array}{ll}
\mathbf{E}\left[\sum_{u}\left(\mathbf{x}_{u}^{(t)}-\sum_{v \in V(u)} \mathbf{x}_{v}^{(0)}\right)^{2}\right] & \begin{array}{l}
\pi_{\mathbf{v}_{i}}(\mathbf{x}) \text { projection } \\
\text { on } i \text {-th eigenspace }
\end{array} \\
=\mathbf{E}\left[\left\|\mathbf{x}^{(t)}-\pi_{\mathbf{v}_{1,2}}\left(\mathbf{x}^{(0)}\right)\right\|^{2}\right] & P^{(i)} \text { matrix of } \\
=\mathbf{E}\left[\left\|\pi_{\mathbf{v}_{\geq 2}}\left(\mathbf{x}_{u}^{(t)}\right)-\pi_{\mathbf{v}_{2}}\left(\mathbf{x}_{u}^{(0)}\right)\right\|^{2}\right] & \text { averaging at time } i \\
\leq \mathbf{E}\left[\left\|\prod P^{(i)} \pi_{\mathbf{v}_{2}}\left(\mathbf{x}_{u}^{(t)}\right)-\pi_{\mathbf{v}_{2}}\left(\mathbf{x}_{u}^{(0)}\right)\right\|^{2}\right] \longleftarrow \text { Not hard to bound } \\
& +\mathbf{E}\left[\left\|\prod^{(i)} \pi_{\mathbf{v} \geq 3}\left(\mathbf{x}_{u}^{(0)}\right)\right\|^{2}\right] . \longleftarrow
\end{array}
$$

Thank you!

