What can be Computed in a Simple Chaotic Way?

Emanuele Natale

What can *Simple* Systems do?

What can *Simple* Systems do?

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

• 3-Median dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

- 3-Median dynamics
- 2-Choice dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

- 3-Median dynamics
- 2-Choice dynamics
- 3-Majority dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

- 3-Median dynamics
- 2-Choice dynamics
- 3-Majority dynamics
- Undecided-state dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

- 3-Median dynamics
- 2-Choice dynamics
- 3-Majority dynamics
- Undecided-state dynamics
- Averaging dynamics (asynchronous)

Some Results on Dynamics

On the complete graph:

3-Median dynamics [DGMSS '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p.

3-Majority dynamics [BCNPS '14, BCNPT '16, BCEKMN '17]. If plurality has **bias** $\mathcal{O}(\sqrt{kn \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n/k})$ -bounded adversary. Without bias, converges in poly(k). When k is large, polynomial separation w.r.t. 2-Choice.

Undecided-State dynamics [BCNPST '15]. If majority/second-majority is at least $1 + \epsilon$, system converges to plurality within $\tilde{\Theta}(\sum_{i} (\frac{\#\{\text{majority nodes}\}}{\#\{i-\text{colored nodes}\}})^2)$ rounds w.h.p.,

Some Results on Dynamics

On the complete graph:

3-Median dynamics [DGMSS '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p.

3-Majority dynamics [BCNPS '14, BCNPT '16, BCEKMN '17]. If plurality has **bias** $\mathcal{O}(\sqrt{kn \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n/k})$ -bounded adversary. Without bias, converges in poly(k). When k is large, polynomial separation w.r.t. 2-Choice.

Undecided-State dynamics [BCNPST '15]. If majority/second-majority is at least $1 + \epsilon$, system converges to plurality within $\tilde{\Theta}(\sum_{i} (\frac{\#\{\text{majority nodes}\}}{\#\{i-\text{colored nodes}\}})^2)$ rounds w.h.p.,

Dynamics can solve Consensus, Median, Majority, in a robust way, but this is trivial in centralized setting.. Can they solve a problem non-trivial in centralized setting?

Min. Bisection Problem.

Given a graph G with 2n nodes. Find $S = \arg \min_{\substack{S \subset V \\ |S| = n}} E(S, V - S).$ [GJS '76]: Min. Bisection is NP-Complete.

Min. Bisection Problem.

Given a graph G with 2n nodes. Find $S = \arg \min_{\substack{S \subset V \\ |S| = n}} E(S, V - S).$ [GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two "communities" of equal size V_1 and V_2 , each edge inside a community included with probability p, each edge across communities included with probability q < p.

Min. Bisection Problem.

Given a graph G with 2n nodes. Find $S = \arg \min_{\substack{S \subset V \\ |S|=n}} E(S, V - S).$ [GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two "communities" of equal size V_1 and V_2 , each edge inside a community included with probability p, each edge across communities included with probability q < p.

Reconstruction problem. Given graph generated by SBM, find original partition.

Min. Bisection Problem.

Given a graph G with 2n nodes. Find $S = \arg \min_{\substack{S \subset V \\ |S| = n}} E(S, V - S).$ [GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two "communities" of equal size V_1 and V_2 , each edge inside a community included with probability p, each edge across communities included with probability q < p.

Reconstruction problem. Given graph generated by SBM, find original partition.

Regular SBM [BDGHT '15]. Graph induced by communities are $p\frac{n}{2}$ -regular random, graph induced by cut is *qn*-regular random.

Asynchronous Averaging Protocol:

- At the first activation, each node picks at random +1 or -1.
- (Dynamics) At each activation, the nodes averages their values.

Asynchronous Averaging Protocol:

- At the first activation, each node picks at random +1 or -1.
- (Dynamics) At each activation, the nodes averages their values.

Asynchronous Averaging Protocol:

- At the first activation, each node picks at random +1 or -1.
- (Dynamics) At each activation, the nodes averages their values.

Asynchronous Averaging Protocol:

- At the first activation, each node picks at random +1 or -1.
- (Dynamics) At each activation, the nodes averages their values.

Asynchronous Averaging Protocol:

- At the first activation, each node picks at random +1 or -1.
- (Dynamics) At each activation, the nodes averages their values.

Asynchronous Averaging Protocol:

At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1.
- (Dynamics) At each activation, the nodes averages their values.

Theorem (Corollary of [BCMNPRT'17(Soon on Arxiv)]). There exist τ_1, τ_2 s.t., if each node labels itself with the sign of the difference of its value at two activation times τ_1 and τ_2 , then with prob. $1 - \epsilon$, after $O_{\varepsilon}(n \log n + \frac{n}{\lambda_2})$ rounds, we get a correct reconstruction up to an ϵ -fraction of nodes.

[BCNPT '17](Informal). $G = (V_1 \bigcup V_2, E)$ s.t. i) $\chi = \mathbf{1}_{V_1} - \mathbf{1}_{V_2}$ close to right-eigenvector of eigenvalue λ_2 of transition matrix of G, and ii) gap between λ_2 and λ_3 sufficiently large, then Averaging (approximately) identifies (V_1, V_2) .

[BCNPT '17](Informal). $G = (V_1 \bigcup V_2, E)$ s.t. i) $\chi = \mathbf{1}_{V_1} - \mathbf{1}_{V_2}$ close to right-eigenvector of eigenvalue λ_2 of transition matrix of G, and ii) gap between λ_2 and λ_3 sufficiently large, then Averaging (approximately) identifies (V_1, V_2) .

Averaging is a linear $\mathbf{x}^{(t)} = \begin{pmatrix} 0 \\ \bullet \\ 0 \\ \bullet \\ \bullet \\ \bullet \end{pmatrix}$ dynamics

$$\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$$

P transition matrix of lazy random walk

$$a = p \frac{n-1}{2}, b = qn$$
 $\chi = (1, ..., 1, -1, ..., -1)$

P symmetric \implies orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ and real eigenvalues $\lambda_1, ..., \lambda_n$.

$$a = p \frac{n-1}{2}, b = qn$$
 $\chi = (1, ..., 1, -1, ..., -1)$

P symmetric \implies orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ and real eigenvalues $\lambda_1, ..., \lambda_n$.

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

$$a = p\frac{n-1}{2}, b = qn$$
 $\chi = (1, ..., 1, -1, ..., -1)$

P symmetric \implies orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ and real eigenvalues $\lambda_1, ..., \lambda_n$.

$$\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$$
$$\mathbf{v}_1 = \frac{1}{\sqrt{n}} \mathbb{1} = \frac{1}{\sqrt{n}} (1, \dots, 1) \text{ with (largest) eigenvalue 1}$$

$$a = p\frac{n-1}{2}, b = qn$$
 $\chi = (1, ..., 1, -1, ..., -1)$

P symmetric \implies orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ and real eigenvalues $\lambda_1, ..., \lambda_n$.

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$ $\mathbf{v}_1 = \frac{1}{\sqrt{n}} \mathbf{1} = \frac{1}{\sqrt{n}} (1, \dots, 1) \text{ with (largest) eigenvalue 1}$ Regular SBM $\implies P \frac{1}{\sqrt{n}} \chi = (\frac{a-b}{a+b}) \cdot \frac{1}{\sqrt{n}} \chi$

$$a = p\frac{n-1}{2}, b = qn$$
 $\chi = (1, ..., 1, -1, ..., -1)$

P symmetric \implies orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ and real eigenvalues $\lambda_1, ..., \lambda_n$.

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$ $\mathbf{v}_1 = \frac{1}{\sqrt{n}} \mathbf{1} = \frac{1}{\sqrt{n}} (1, ..., 1)$ with (largest) eigenvalue 1 Regular SBM $\implies P \frac{1}{\sqrt{n}} \chi = \left(\frac{a-b}{a+b}\right) \cdot \frac{1}{\sqrt{n}} \chi$ W.h.p. $\lambda_3(1+\delta) < \frac{a-b}{a+b} = \lambda_2$, then $\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{1} + \left(\frac{a-b}{a+b}\right)^t \frac{1}{n} (\chi^\mathsf{T} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$ with $\|\mathbf{e}^{(t)}\| < \lambda_3^t \sqrt{n}$

with $\|\mathbf{e}^{(t)}\| \leq \lambda_3^t \sqrt{n}$

$$\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \left(\underbrace{\frac{a-b}{a+b}}_{=\lambda_2}\right)^t \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$$

$$\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \left(\underbrace{\frac{a-b}{a+b}}_{=\lambda_2}\right)^t \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$$

$$\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)} = (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \lambda_2^{t-1} (\lambda_2 - 1) \chi + \underbrace{\mathbf{e}^{(t)} - \mathbf{e}^{(t-1)}}_{o(\lambda_2^t) \text{ if } t = \Omega(\log n)}$$

$$\mathbf{x}^{(t)} = \frac{1}{n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \left(\frac{a-b}{a+b}\right)^t \frac{1}{n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$$
$$\underbrace{=\lambda_2}$$

$$\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)} = (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \lambda_2^{t-1} (\lambda_2 - 1) \chi + \underbrace{\mathbf{e}^{(t)} - \mathbf{e}^{(t-1)}}_{o(\lambda_2^t) \text{ if } t = \Omega(\log n)}$$

$$\frac{\operatorname{sign}(\mathbf{x}^{(t)}(u) - \mathbf{x}^{(t-1)}(u))}{\propto \operatorname{sign}(\chi(u))}$$

Open Problem: Analyzing LPAs

Averagins is a "linearization" of Label Propagation Algorithms:
Each node initially sample a random color, then
at each round, each node switch to the majority label of a sample of neighbors.

Thank you!