What can be Computed in a Simple Chaotic Way?

Emanuele Natale

IIIUII

What can Simple Systems do?

SYSTEMS

Computer
Networks

Statistical
Distributed
Mechanics
Computing
SCIENCES

What can Simple Systems do?

Schools of fish - [SKJCW'08]

Flocks of birds [BDDS'14]

Biological Systems

SYSTEMS

Dynamics

- Very simple distributed algorithms:

ส్ For every graph, agent and round, states are updated according to fixed (random) rule of current state and Ξ symmetric function of states of neighbors.

Dynamics

- Very simple distributed algorithms:

శ్g For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics

Dynamics

= Very simple distributed algorithms:
శ్g For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 2-Choice dynamics

(2)

Dynamics

- Very simple distributed algorithms:

ส్g For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 2-Choice dynamics
- 3-Majority dynamics

Dynamics

- Very simple distributed algorithms:

శ్g For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 2-Choice dynamics
- 3-Majority dynamics
- Undecided-state dynamics

Dynamics

- Very simple distributed algorithms:

ส్g For every graph, agent and round, states are updated according to fixed (random) rule of current state and symmetric function of states of neighbors.

Examples of Dynamics

- 3-Median dynamics
- 2-Choice dynamics
- 3-Majority dynamics
- Undecided-state dynamics
- Averaging dynamics

Some Results on Dynamics

On the complete graph:
3-Median dynamics [DGMSS '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p.

3-Majority dynamics [BCNPS '14, BCNPT '16, BCEKMN '17]. If plurality has bias $\mathcal{O}(\sqrt{k n \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n / k})$-bounded adversary. Without bias, converges in poly (k). When k is large, polynomial separation w.r.t. 2-Choice.

Undecided-State dynamics [BCNPST '15]. If majority/second-majority is at least $1+\epsilon$, system converges to plurality within $\tilde{\Theta}\left(\sum_{i}\left(\frac{\#\{\text { majority nodes }\}}{\#\{i-\text { colored nodes }\}}\right)^{2}\right)$ rounds w.h.p.,

Some Results on Dynamics

On the complete graph:
3-Median dynamics [DGMSS '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p.

3-Majority dynamics [BCNPS '14, BCNPT '16, BCEKMN '17]. If plurality has bias $\mathcal{O}(\sqrt{k n \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n / k})$-bounded adversary. Without bias, converges in poly (k). When k is large, polynomial separation w.r.t. 2-Choice.

Undecided-State dynamics [BCNPST '15]. If majority/second-majority is at least $1+\epsilon$, system converges to plurality within $\tilde{\Theta}\left(\sum_{i}\left(\frac{\#\{\text { majority nodes }\}}{\#\{i-\text { colored nodes }\}}\right)^{2}\right)$ rounds w.h.p.,

Dynamics can solve Consensus, Median, Majority, in a robust way, but this is trivial in centralized setting.. Can they solve a problem non-trivial in centralized setting?

Community Detection

Min. Bisection Problem.
Given a graph G with $2 n$ nodes. Find

$$
S=\arg \min _{\substack{S \subset V \\|S|=n}} E(S, V-S) .
$$

[GJS '76]: Min. Bisection is NP-Complete.

Community Detection

Min. Bisection Problem.
Given a graph G with $2 n$ nodes. Find

$$
S=\arg \min _{\substack{S \subset V \\|S|=n}} E(S, V-S) .
$$

[GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two "communities" of equal size V_{1} and V_{2}, each edge inside a community included with probability p, each edge across
 communities included with probability $q<p$.

Community Detection

Min. Bisection Problem.
Given a graph G with $2 n$ nodes. Find

$$
S=\arg \min _{\substack{S \subset V \\|S|=n}} E(S, V-S) .
$$

[GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two "communities" of equal size V_{1} and V_{2}, each edge inside a community included with probability p, each edge across communities included with probability $q<p$.

Reconstruction problem. Given graph generated by SBM, find original partition.

Community Detection

Min. Bisection Problem.
Given a graph G with $2 n$ nodes. Find

$$
S=\arg \min _{\substack{|S|=n \\|S|=n}} E(S, V-S)
$$

[GJS '76]: Min. Bisection is NP-Complete.

Stochastic Block Model. Two "communities" of equal size V_{1} and V_{2}, each edge inside a community included with probability p, each edge across communities included with probability $q<p$.

Reconstruction problem. Given graph generated by SBM, find original partition.

Regular SBM [BDGHT '15]. Graph induced by communities are $p \frac{n}{2}$-regular random, graph induced by cut is $q n$-regular random.

The Averaging Dynamics

Asynchronous Averaging Protocol:
At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1 .
- (Dynamics) At each activation, the nodes averages their values.

The Averaging Dynamics

Asynchronous Averaging Protocol:
At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1 .
- (Dynamics) At each activation, the nodes averages their values.

The Averaging Dynamics

Asynchronous Averaging Protocol:
At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1 .
- (Dynamics) At each activation, the nodes averages their values.

The Averaging Dynamics

Asynchronous Averaging Protocol:
At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1 .
- (Dynamics) At each activation, the nodes averages their values.

The Averaging Dynamics

Asynchronous Averaging Protocol:
At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1 .
- (Dynamics) At each activation, the nodes averages their values.

The Averaging Dynamics

Asynchronous Averaging Protocol:
At each round a random edge is chosen.

- At the first activation, each node picks at random +1 or -1 .
- (Dynamics) At each activation, the nodes averages their values.

Theorem (Corollary of [BCMNPRT'17(Soon on Arxiv)]). There exist τ_{1}, τ_{2} s.t., if each node labels itself with the sign of the difference of its value at two activation times τ_{1} and τ_{2}, then with prob. $1-\epsilon$, after $O_{\varepsilon}\left(n \log n+\frac{n}{\lambda_{2}}\right)$ rounds, we get a correct reconstruction up to an ϵ-fraction of nodes.

"E[Averaging Dynamics]"

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to lazy average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

" $\mathbb{E}[$ Averaging Dynamics $]$ "

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to lazy average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

"E[Averaging Dynamics]"

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to lazy average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

" $\mathbb{E}[$ Averaging Dynamics]"

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to lazy average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

" $\mathbb{E}[$ Averaging Dynamics]"

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to lazy average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

$$
\frac{4 \cdot \boldsymbol{\pi}+\boldsymbol{\pi}+\boldsymbol{\pi}+\boldsymbol{\pi}}{8}=\pi
$$

" $\mathbb{E}[$ Averaging Dynamics]"

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set value $x^{(t)}$ to lazy average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

$$
\frac{4 \cdot \boldsymbol{n}+\boldsymbol{\pi}+\boldsymbol{\pi}+\boldsymbol{\pi}}{8}=\pi
$$

Community Detection via (Parallel) Averaging

Community Detection via (Parallel) Averaging

Community Detection via (Parallel) Averaging

Community Detection via (Parallel) Averaging
[BCNPT $\left.{ }^{\prime} 17\right]$ (Informal). $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t.
i) $\chi=\mathbf{1}_{V_{1}}-\mathbf{1}_{V_{2}}$ close to right-eigenvector of eigenvalue λ_{2} of transition matrix of G, and ii) gap between λ_{2} and λ_{3} sufficiently large, then Averaging (approximately) identifies (V_{1}, V_{2}).

Community Detection via (Parallel) Averaging

[BCNPT $\left.{ }^{\prime} 17\right]$ (Informal). $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t.
i) $\chi=\mathbf{1}_{V_{1}}-\mathbf{1}_{V_{2}}$ close to right-eigenvector of eigenvalue λ_{2} of transition matrix of G, and ii) gap between λ_{2} and λ_{3} sufficiently large, then Averaging (approximately) identifies (V_{1}, V_{2}).

Averaging is a linear dynamics

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

P transition matrix of lazy random walk

Analysis on Regular SBM

$$
a=p \frac{n-1}{2}, b=q n \quad \chi=(1, \ldots, 1,-1, \ldots,-1)
$$

P symmetric \Longrightarrow orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Analysis on Regular SBM

$$
a=p \frac{n-1}{2}, b=q n \quad \chi=(1, \ldots, 1,-1, \ldots,-1)
$$

P symmetric \Longrightarrow orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$

Analysis on Regular SBM

$$
a=p \frac{n-1}{2}, b=q n \quad \chi=(1, \ldots, 1,-1, \ldots,-1)
$$

P symmetric \Longrightarrow orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbb{1}=\frac{1}{\sqrt{n}}(1, \ldots, 1)$ with (largest) eigenvalue 1

Analysis on Regular SBM

$a=p \frac{n-1}{2}, b=q n \quad \chi=(1, \ldots, 1,-1, \ldots,-1)$
P symmetric \Longrightarrow orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbb{1}=\frac{1}{\sqrt{n}}(1, \ldots, 1)$ with (largest) eigenvalue 1
Regular $\mathrm{SBM} \Longrightarrow P \frac{1}{\sqrt{n}} \chi=\left(\frac{a-b}{a+b}\right) \cdot \frac{1}{\sqrt{n}} \chi$

$$
\frac{1}{a+b}\left(\begin{array}{c:c}
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\cdots a "_{1} "_{s} \cdots & \cdots b{ }^{1} "_{s} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\hdashline \cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \cdot \\
\cdots b "_{s} \cdots & \cdots a "_{1} "_{s} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)=\frac{a-b}{a+b}\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)
$$

Analysis on Regular SBM

$$
a=p \frac{n-1}{2}, b=q n \quad \chi=(1, \ldots, 1,-1, \ldots,-1)
$$

P symmetric \Longrightarrow orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbb{1}=\frac{1}{\sqrt{n}}(1, \ldots, 1)$ with (largest) eigenvalue 1
Regular $\mathrm{SBM} \Longrightarrow P \frac{1}{\sqrt{n}} \chi=\left(\frac{a-b}{a+b}\right) \cdot \frac{1}{\sqrt{n}} \chi$
W.h.p. $\lambda_{3}(1+\delta)<\frac{a-b}{a+b}=\lambda_{2}$, then

$$
\mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\left(\frac{a-b}{a+b}\right)^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

with $\left\|\mathbf{e}^{(t)}\right\| \leq \lambda_{3}^{t} \sqrt{n}$

Analysis on Regular SBM

$$
\begin{aligned}
& \frac{1}{n} \sum_{u \in V_{1}} \mathbf{x}^{(0)}(u)-\frac{1}{n} \sum_{u \in V_{2}} \mathbf{x}^{(0)}(u) \\
& \frac{1}{n} \sum_{u \in V} \mathbf{x}^{(0)}(u) \\
& \text { W.h.p. } \lambda_{3}(1+\delta)<\frac{a-b}{a+b}=\lambda_{2} \text {, then } \\
& \mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\left(\frac{a-b}{a+b}\right)^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
\end{aligned}
$$

with $\left\|\mathbf{e}^{(t)}\right\| \leq \lambda_{3}^{t} \sqrt{n}$

Analysis on Regular SBM

$$
\mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+(\underbrace{\frac{a-b}{a+b}}_{=\lambda_{2}})^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

Analysis on Regular SBM

$$
\begin{aligned}
& \mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+(\underbrace{\frac{a-b}{a+b}}_{=\lambda_{2}})^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}_{o\left(\lambda_{2}^{t}\right) \text { if } t=\Omega(\log n)}
\end{aligned}
$$

Analysis on Regular SBM

$$
\begin{aligned}
& \mathbf{x}^{(t)}=\frac{1}{n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+(\underbrace{\frac{a-b}{a+b}}_{=\lambda_{2}})^{t} \frac{1}{n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}_{o\left(\lambda_{2}^{t}\right) \text { if } t=\Omega(\log n)}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{sign}\left(\mathbf{x}^{(t)}(u)-\mathbf{x}^{(t-1)}(u)\right) \\
\propto \operatorname{sign}(\chi(u))
\end{gathered}
$$

Open Problem: Analyzing LPAs

Averagins is a "linearization" of Label Propagation Algorithms:

- Each node initially sample a random color, then
- at each round, each node switch to the majority label of a sample of neighbors.

Thank you!

