Find Your Place: Simple Distributed Algorithms for Community Detection

Emanuele Natale ${ }^{\dagger}$
joint work with
Luca Becchetti ${ }^{\dagger}$, Andrea Clementi*, Francesco Pasquale ${ }^{\dagger}$ and Luca Trevisan ${ }^{\star}$

Workshop on
Random Processes in Discrete Structures 30 August - 2 September, 2016

Warwick, UK
*preprint at goo.gl/aqZmCD

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics
[Doerr et al. '11]

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics
[Doerr et al. '11]
- 3-Majority dynamics
[Becchetti et al. '14, '16]

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics
[Doerr et al. '11]
- 3-Majority dynamics
[Becchetti et al. '14, '16]
- Undecided-state dynamics [Becchetti et al. '15]

Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics
[Doerr et al. '11]
- 3-Majority dynamics
[Becchetti et al. '14, '16]
- Undecided-state dynamics [Becchetti et al. '15]

Can dynamics solve a problem non-trivial in centralized setting?

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+\mathbf{1},-\mathbf{1}\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+\mathbf{1},-1\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+\mathbf{1},-\mathbf{1}\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+\mathbf{1},-1\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if

$$
\begin{aligned}
& x^{(t)}<x^{(t-1)}, \text { red } \\
& \text { otherwise. }
\end{aligned}
$$

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+\mathbf{1},-1\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if

$$
\begin{aligned}
& x^{(t)}<x^{(t-1)} \text {, red } \\
& \text { otherwise. }
\end{aligned}
$$

The Average Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{+1,-1\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

Well studied process [Shah '09]:

- Converges to (weighted) global average of initial values,
- Convergence time = mixing time of G,
- Important applications in fault-tolerant self-stabilizing consensus.

Our Results

Our Results

Our Results

Our Results

Our Results

(Informal) Theorem. $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t.
i) $\chi=\mathbf{1}_{V_{1}}-\mathbf{1}_{V_{2}}$ close to right-eigenvector of eigenvalue λ_{2} of transition matrix of G, and
ii) gap between λ_{2} and $\lambda=\max \left\{\lambda_{3},\left|\lambda_{n}\right|\right\}$ sufficiently large, then
Averaging (approximately) identifies $\left(V_{1}, V_{2}\right)$.

Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{$ blue, red $\}$.
- Then, at each round 1. Set color $x^{(t)}$ to average of neighbors,

2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red
otherwise.
$\operatorname{Pr}\left(\left|\sum_{v \in V_{1}} \mathbf{x}(v)-\sum_{v \in V_{2}} \mathbf{x}(v)\right|>n^{\epsilon}\right) \geq 1-n^{\Omega(1)}$ (w.h.p.)

Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{$ blue, red $\}$.
- Then, at each round 1. Set color $x^{(t)}$ to average of neighbors, 2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.

Closely related to simple random walk on G : $Y_{v}^{(t)}:=$ position at time t of simple random walk starting from v

$$
\Longrightarrow x^{(t)}(v)=\mathbb{E}\left[x^{(0)}\left(Y_{v}^{(t)}\right)\right]
$$

Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{$ blue, red $\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if $x^{(t)}<x^{(t-1)}$, red otherwise.
$A=\left(\mathbb{1}_{((u, v) \in E)}\right)_{u, v \in V}$ adjacency matrix of G
D diagonal matrix of node degrees in G
$P=D^{-1} A$ transition matrix of random walk

Features:

- No explicit eigenvector computation
- Implicit
"simulation" of
power method

Averaging
is a linear
dynamics

$$
\mathbf{x}^{(t)}=P \cdot \mathbf{x}^{(t-1)}=P^{t} \cdot \mathbf{x}^{(0)}
$$

Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t=0$, randomly pick value $x^{(t)} \in\{$ blue, red $\}$.
- Then, at each round

1. Set color $x^{(t)}$ to average of neighbors,
2. Set label to blue if

Remove projection on first eigenspace
\Longrightarrow running time depending on λ_{2} / λ

Bottleneck of mixing time for spectral methods:
Distributed computation of second eigenvector [Kempe \& McSherry '08]: $\mathcal{O}\left(\tau_{m i x} \log ^{2} n\right)$.

Community Detection as Minimum Bisection

Minimum Bisection Problem.
Input: a graph G with $2 n$ nodes.
Output: $S=\arg \min _{\substack{S \subset V \\|S|=n}} E(S, V-S)$.

[Garey, Johnson, Stockmeyer '76]:
Min-Bisection is NP-Complete.

The Stochastic Block Model

Stochastic Block Model (SBM). Two
"communities" of equal size V_{1} and V_{2}, each edge inside a community included with probability
$p=\frac{a}{n}$, each edge across communities included with probability $q=\frac{b}{n}<p$.

The Stochastic Block Model

Reconstruction problem. Given graph generated by SBM, find original partition.

The Stochastic Block Model

Reconstruction problem. Given graph generated by SBM, find original partition.

$\lambda_{2}(P) \approx \frac{a-b}{d} \Longrightarrow$ mixing time
of a random walk on $\mathcal{G}_{2 n, \frac{a}{n}, \frac{b}{n}}$ is $\geq \frac{1}{1-\lambda_{2}} \approx \frac{a+b}{2 b}$.

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

2-regular bipartite

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}} \sim$ random a-regular graphs
- $\left.G\right|_{E\left(V_{1}, V_{2}\right)} \sim$ random b-regular bipartite graph.

2-regular bipartite

When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- $a-b>2 \sqrt{d}$ in SBM (weak)
- $a-b>2(\sqrt{a}-\sqrt{b}) \sqrt{b}+2 \log n$ in SBM (strong)
- $a-b>2 \sqrt{d-1}$ in RSBM (strong)

Linearizations of Belief Propagation, advanced spectral methods (power and Lanczos method), SDP.

When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- $a-b>2 \sqrt{d}$ in SBM (weak)
- $a-b>2(\sqrt{a}-\sqrt{b}) \sqrt{b}+2 \log n$ in SBM (strong)
- $a-b>2 \sqrt{d-1}$ in RSBM (strong)

Linearizations of Belief Propagation, advanced spectral methods (power and Lanczos method), SDP.

Not a dynamics:
nonlinear, different messages to different neighbors

Regular Clustered and Clustered Graphs

($2 n, d, b$)-clustered Regular Graph.
A graph $G=\left(V_{1} \bigcup V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- G is d regular,
- each $v \in V_{i}$ has b neighbors in V_{3-i}.

No randomness!
b-regular bipartite

Regular Clustered and Clustered Graphs

($2 n, d, b$)-clustered Regular Graph.
A graph $G=\left(V_{1} \cup \dot{V} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- G is d regular,
- each $v \in V_{i}$ has b neighbors in V_{3-i}.

Thm. If $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}}$ expanders and $\lambda_{2} / \lambda>1$ (e.g. if $b \ll d / 2$), averaging produces strong reconstruction in $\mathcal{O}(\log n)$ rounds.

Regular Clustered and Clustered Graphs

($2 n, d, b$)-clustered Regular Graph.
A graph $G=\left(V_{1} \dot{\bigcup} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- G is d regular,
- each $v \in V_{i}$ has b neighbors in V_{3-i}.

Thm. If $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}}$ expanders and $\lambda_{2} / \lambda>1$ (e.g. if $b \ll d / 2$), averaging produces strong reconstruction in $\mathcal{O}(\log n)$ rounds.

RSBM is $(2 n, d, b)$-clustered regular
with $\left.G\right|_{V_{1}},\left.G\right|_{V_{2}}$ expanders w.h.p. \Longrightarrow
Cor. Strong reconstruction $(a-b>2 \sqrt{d-1})$

Regular Clustered and Clustered Graphs

$(2 n, d, b, \gamma)$-clustered Graph.
A graph $G=\left(V_{1} \cup V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- every node has degree $d \pm \gamma d$
- each $v \in V_{i}$ has $b \pm \gamma d$ neighbors in V_{3-i}.

Thm. If $\min \left\{\lambda_{2}, \frac{a-b}{d}\right\}>\lambda$ and $\gamma=\mathcal{O}\left(\frac{a-b}{d}-\lambda_{3}\right)$
$\Longrightarrow \mathcal{O}\left(\gamma^{2} /\left(\frac{a-b}{d}-\lambda_{3}\right)^{2}\right)$-weak reconstruction.

Regular Clustered and Clustered Graphs

$(2 n, d, b, \gamma)$-clustered Graph.
A graph $G=\left(V_{1} \dot{\cup} V_{2}, E\right)$ s.t.

- $\left|V_{1}\right|=\left|V_{2}\right|$,
- every node has degree $d \pm \gamma d$
- each $v \in V_{i}$ has $b \pm \gamma d$ neighbors in V_{3-i}.

Thm. If $\min \left\{\lambda_{2}, \frac{a-b}{d}\right\}>\lambda$ and $\gamma=\mathcal{O}\left(\frac{a-b}{d}-\lambda_{3}\right)$
$\Longrightarrow \mathcal{O}\left(\gamma^{2} /\left(\frac{a-b}{d}-\lambda_{3}\right)^{2}\right)$-weak reconstruction.
Cor. If $a-b>\sqrt{d \log n}$ and $b>\frac{\log n}{n^{2}}, \mathrm{SBM}$ is
$\left(2 n, d, b, 6 \sqrt{\frac{\log n}{d}}\right)$-clust. with $\min \left\{\lambda_{2}, 24 \sqrt{\frac{\log n}{d}}\right\}>\lambda$
w.h.p. $\Longrightarrow \mathcal{O}\left(\frac{d \log n}{(a-b)^{2}}\right)$-weak reconstruction.

Analysis: Roadmap

Strong reconstruction on ($2 n, d, b$)-clustered regular graphs

Strong reconstruction on Regular SBM
$\mathcal{O}\left(\frac{\gamma^{2}}{(a-b) / d-\lambda}\right)$-weak reconst. on
($2 n, d, b, \gamma$)-clust. graphs
$\mathcal{O}\left(\frac{d \log n}{(a-b)^{2}}\right)$-weak
reconstruction on SBM

Analysis: Roadmap

Strong reconstruction on ($2 n, d, b$)-clustered regular graphs

Strong reconstruction on Regular SBM
$\mathcal{O}\left(\frac{\gamma^{2}}{(a-b) / d-\lambda}\right)$-weak reconst. on
($2 n, d, b, \gamma$)-clust. graphs

$$
\mathcal{O}\left(\frac{d \log n}{(a-b)^{2}}\right) \text {-weak }
$$

reconstruction
on SBM
$\mathcal{O}\left(\frac{d}{(a-b)^{2}}\right)$-weak reconstruction on SBM

Analysis on Regular Graphs

$$
P=D^{-1} A=\frac{1}{d} A \longrightarrow \begin{aligned}
& \text { symmetric } \Longrightarrow \text { orthonormal } \\
& \text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n} \text { and real } \\
& \text { eigenvalues } \lambda_{1}, \ldots, \lambda_{2 n} .
\end{aligned}
$$

Analysis on Regular Graphs

$$
\begin{aligned}
& P=D^{-1} A=\frac{1}{d} A \longrightarrow \begin{array}{c}
\text { symmetric } \Longrightarrow \text { orthonormal } \\
\text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n} \text { and real } \\
\text { eigenvalues } \lambda_{1}, \ldots, \lambda_{2 n}
\end{array} \\
& \mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}
\end{aligned}
$$

Analysis on Regular Graphs

$$
\begin{gathered}
P=D^{-1} A=\frac{1}{d} A \longrightarrow \begin{array}{c}
\text { symmetric } \Longrightarrow \text { orthonormal } \\
\text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n} \text { and real } \\
\text { eigenvalues } \lambda_{1}, \ldots, \lambda_{2 n}
\end{array} \\
\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i} \xrightarrow{t \rightarrow \infty}\left(\mathbf{v}_{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{1} \\
\begin{array}{c}
\text { Perron-Frobenius Theorem: }
\end{array} \\
\lambda_{1}=1,\left|\lambda_{i \neq 1}\right|<1
\end{gathered}
$$

Analysis on Regular Graphs

$$
\begin{aligned}
& P=D^{-1} A=\frac{1}{d} A \longrightarrow \begin{array}{c}
\text { symmetric } \Longrightarrow \text { orthonormal } \\
\text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n} \text { and real } \\
\text { eigenvalues } \lambda_{1}, \ldots, \lambda_{2 n}
\end{array} \\
& \mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i} \\
& \mathbf{v}_{1}=\frac{1}{\sqrt{2 n}} \mathbf{1}
\end{aligned}
$$

Regular clustered graphs $\Longrightarrow P \chi=\left(\frac{a-b}{d}\right) \cdot \chi$

Analysis on Regular Graphs

$$
P=D^{-1} A=\frac{1}{d} A \longrightarrow \begin{aligned}
& \text { symmetric } \\
& \text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n} \text { and real }
\end{aligned}
$$ eigenvalues $\lambda_{1}, \ldots, \lambda_{2 n}$.

$\mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}$
$\mathbf{v}_{1}=\frac{1}{\sqrt{2 n}} \mathbf{1}$
Regular clustered graphs $\Longrightarrow P \chi=\left(\frac{a-b}{d}\right) \cdot \chi$

$$
\frac{1}{d}\left(\begin{array}{c:c}
\ldots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\cdots a "_{1} "_{s} \cdots & \cdots b "_{1} "_{s} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\
\hdashline \cdots \cdot \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \cdots \\
\cdots b "_{1} "_{s} \cdots & \cdots a{ }^{\cdots} "_{s} \cdots \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)=\frac{a-b}{d}\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
-1
\end{array}\right)
$$

Analysis on Regular Graphs

$$
\begin{aligned}
& \text { symmetric } \Longrightarrow \text { orthonormal } \\
& P=D^{-1} A=\frac{1}{d} A \longrightarrow \text { eigenvectors } \mathbf{v}_{1}, \ldots, \mathbf{v}_{2 n} \text { and real } \\
& \text { eigenvalues } \lambda_{1}, \ldots, \lambda_{2 n} \text {. } \\
& \mathbf{x}^{(t)}=P^{t} \cdot \mathbf{x}^{(0)}=\sum_{i} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i} \\
& \mathbf{v}_{1}=\frac{1}{\sqrt{2 n}} \mathbf{1}
\end{aligned}
$$

Regular clustered graphs $\Longrightarrow P \chi=\left(\frac{a-b}{d}\right) \cdot \chi$

$$
\text { If } \lambda<\frac{a-b}{d}=\lambda_{2} \text { then }
$$

$$
\mathbf{x}^{(t+1)}=\frac{1}{2 n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{2 n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
$$

with $\left\|\mathbf{e}^{(t)}\right\|=\left\|\sum_{i=3}^{2 n} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}\right\| \leq \lambda^{t}\left\|\mathbf{x}^{(0)}\right\| \leq \lambda^{t} \sqrt{2 n}$

Analysis on Regular Graphs

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{n} \sum_{u \in V_{1}} \mathbf{x}^{(0)}(u)-\frac{1}{n} \sum_{u \in V_{2}} \mathbf{x}^{(0)}(u)\right) \\
& \frac{1}{2 n} \sum_{u \in V} \mathbf{x}^{(0)}(u) \\
& \text { If } \lambda<\frac{a-b}{d}=\lambda_{2} \text { then } \\
& \mathbf{x}^{(t+1)}=\frac{1}{2 n}\left(1^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{2 n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \text { with }\left\|\mathbf{e}^{(t)}\right\|=\left\|\sum_{i=3}^{2 n} \lambda_{i}^{t}\left(\mathbf{v}_{i}^{\top} \mathbf{x}^{(0)}\right) \mathbf{v}_{i}\right\| \leq \lambda^{t}\left\|\mathbf{x}^{(0)}\right\| \leq \lambda^{t} \sqrt{2 n}
\end{aligned}
$$

Analysis on Regular Graphs

$$
\begin{aligned}
& \text { If } \lambda(1+\delta)<\frac{a-b}{d}=\lambda_{2} \text { then } \\
& \mathbf{x}^{(t)}=\frac{1}{2 n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{2 n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)} \\
& \text { with }\left\|\mathbf{e}^{(t)}\right\| \leq \lambda^{t} \sqrt{2 n}
\end{aligned}
$$

Analysis on Regular Graphs

$$
\begin{aligned}
& \text { If } \lambda(1+\delta)<\frac{a-b}{d}=\lambda_{2} \text { then } \\
& \quad \mathbf{x}^{(t)}=\frac{1}{2 n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{2 n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
\end{aligned}
$$

with $\left\|\mathbf{e}^{(t)}\right\| \leq \lambda^{t} \sqrt{2 n}$

$$
\mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\top} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}_{\ll \lambda_{2}^{t-1} \text { if } t=\Omega(\log n)}
$$

Analysis on Regular Graphs

$$
\begin{aligned}
& \text { If } \lambda(1+\delta)<\frac{a-b}{d}=\lambda_{2} \text { then } \\
& \mathbf{x}^{(t)}=\frac{1}{2 n}\left(\mathbf{1}^{\top} \mathbf{x}^{(0)}\right) \mathbf{1}+\lambda_{2}^{t} \frac{1}{2 n}\left(\chi^{\top} \mathbf{x}^{(0)}\right) \chi+\mathbf{e}^{(t)}
\end{aligned}
$$

with $\left\|\mathbf{e}^{(t)}\right\| \leq \lambda^{t} \sqrt{2 n}$
$\mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}=\left(\chi^{\boldsymbol{\top}} \mathbf{x}^{(0)}\right) \lambda_{2}^{t-1}\left(\lambda_{2}-1\right) \chi+\underbrace{\mathbf{e}^{(t)}-\mathbf{e}^{(t-1)}}$

$$
\operatorname{sign}\left(\mathbf{x}^{(t)}(u)-\mathbf{x}^{(t-1)}(u)\right)=\operatorname{sign}(\chi(u)) \text { or }-\operatorname{sign}(\chi(u))
$$

Analysis on Regular Graphs

Corollary.

RSBM is $(2 n, d, b)$-clust. regular and
$\lambda=\mathcal{O}\left(\frac{1}{\sqrt{d}}\right) \ll \frac{a-b}{d}$ by random degree k lifts
[Friedman \& Kohler]
\Longrightarrow Strong reconstruction in $\log n$ w.h.p.

$$
\operatorname{sign}\left(\mathbf{x}^{(t)}(u)-\mathbf{x}^{(t-1)}(u)\right)=\operatorname{sign}(\chi(u)) \text { or }-\operatorname{sign}(\chi(u))
$$

More Communities

(k, n, d, b)-clustered Regular Graph. A graph $G=\left(\dot{\bigcup}_{i=1}^{k} V_{i}, E\right)$ s.t.

- $\left|V_{1}\right|=\cdots=\left|V_{k}\right|$,
- every node has degree $d=a+(k-1) b$
- each $v \in V_{i}$ has b neighbors in V_{j} for $j \neq i$.
$\frac{a-b}{d}$ eigenval. with $\mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ eigenvec. s.t. constant on each V_{i} and $\mathbf{1}^{\top} \mathbf{v}_{i}=0$.

More Communities

(k, n, d, b)-clustered Regular Graph. A graph $G=\left(\dot{\bigcup}_{i=1}^{k} V_{i}, E\right)$ s.t.

- $\left|V_{1}\right|=\cdots=\left|V_{k}\right|$,
- every node has degree $d=a+(k-1) b$
- each $v \in V_{i}$ has b neighbors in V_{j} for $j \neq i$.
$\frac{a-b}{d}$ eigenval. with $\mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ eigenvec. s.t. constant on each V_{i} and $\mathbf{1}^{\top} \mathbf{v}_{i}=0$.

$$
\left(\frac{a-b}{d}=\lambda_{2}=\ldots=\lambda_{k}\right)
$$

Thm. If $\frac{a-b}{d}>\lambda(1+\delta)$ with $\lambda=\max \left\{\lambda_{k+1},\left|\lambda_{k n}\right|\right\}$, then $\Theta(\log n)$ parallel run of averaging gives strong reconstruction in $\mathcal{O}(\log n)$ rounds.

Future Work

Non-regular SBM.
How much "weak" with many communities?

Future Work

Non-regular SBM.

How much "weak" with many communities?
Sparisification.
At each round, pick an edge u.a.r. (population protocols): those two nodes averages their values.
Simulations. Does not (seem to) work for $a-b \ll \log n$. Analysis. Should work for $a-b \gg \log n$.

Future Work

Non-regular SBM.
How much "weak" with many communities?
Sparisification.
At each round, pick an edge u.a.r. (population protocols): those two nodes averages their values.
Simulations. Does not (seem to) work for $a-b \ll \log n$. Analysis. Should work for $a-b \gg \log n$.

Planted Clique.
$G_{n, p} \cup$ "clique of $\sqrt{n}(1+\delta)$ nodes":
Does averaging identify the clique?

Thank You!

