Find Your Place: Simple Distributed Algorithms for Community Detection

Emanuele Natale[†]

joint work with Luca Becchetti[†], Andrea Clementi^{*}, Francesco Pasquale[†] and Luca Trevisan^{*}

Workshop on Random Processes in Discrete Structures 30 August - 2 September, 2016 Warwick, UK

*preprint at goo.gl/aqZmCD

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

• 3-Median dynamics [Doerr et al. '11]

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics [Doerr et al. '11]
- 3-Majority dynamics [Becchetti et al. '14, '16]

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics [Doerr et al. '11]
- 3-Majority dynamics [Becchetti et al. '14, '16]
- Undecided-state dynamics [Becchetti et al. '15]

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- 3-Median dynamics [Doerr et al. '11]
- 3-Majority dynamics [Becchetti et al. '14, '16]
- Undecided-state dynamics [Becchetti et al. '15]

Can dynamics solve a problem non-trivial in centralized setting?

Al nodes at the same time:

- At t = 0, randomly pick value $x^{(t)} \in \{+1, -1\}$.
- Then, at each round
 1. Set color x^(t) to
 - average of neighbors,2. Set label to blue if
 - $x^{(t)} < x^{(t-1)}, \operatorname{red}$

otherwise.

Well studied process [Shah '09]:

- Converges to (weighted) global average of initial values,
- Convergence time = mixing time of G,
- Important applications in fault-tolerant self-stabilizing consensus.

(Informal) Theorem. $G = (V_1 \bigcup V_2, E)$ s.t. i) $\chi = \mathbf{1}_{V_1} - \mathbf{1}_{V_2}$ close to right-eigenvector of eigenvalue λ_2 of transition matrix of G, and ii) gap between λ_2 and $\lambda = \max\{\lambda_3, |\lambda_n|\}$ sufficiently large, then Averaging (approximately) identifies (V_1, V_2) .

Al nodes at the same time:

- At t = 0, randomly pick value $x^{(t)} \in \{ blue, red \}$.
- Then, at each round
 - 1. Set color $x^{(t)}$ to average of neighbors,
 - 2. Set label to **blue** if $x^{(t)} < x^{(t-1)}$, red otherwise.

Closely related to simple random walk on G: $Y_v^{(t)} :=$ position at time t of simple random walk starting from v

 $\implies x^{(t)}(v) = \mathbb{E}[x^{(0)}(Y_v^{(t)})]$

Al nodes at the same time:

- At t = 0, randomly pick value $x^{(t)} \in \{ blue, red \}$.
- Then, at each round
 - 1. Set color $x^{(t)}$ to average of neighbors,
 - 2. Set label to **blue** if $x^{(t)} < x^{(t-1)}$, red otherwise.

$A = (\mathbb{1}_{((u,v)\in E)})_{u,v\in V}$ adjacency matrix of G

D diagonal matrix of node degrees in G

 $P = D^{-1}A$ transition matrix of random walk

Features:

- No explicit eigenvector computation
- Implicit "simulation" of power method

Averaging is a **linear** dynamics $\mathbf{x}^{(t)} = P \cdot \mathbf{x}^{(t-1)} = P^t \cdot \mathbf{x}^{(0)}$

Remove projection on first eigenspace \implies running time depending on λ_2/λ

Bottleneck of mixing time for spectral methods:

Distributed computation of second eigenvector [Kempe & McSherry '08]: $\mathcal{O}(\tau_{mix} \log^2 n)$.

Community Detection as Minimum Bisection

Minimum Bisection Problem. Input: a graph G with 2n nodes. Output: $S = \arg \min_{\substack{S \subset V \\ |S| = n}} E(S, V - S).$

[Garey, Johnson, Stockmeyer '76]: **Min-Bisection** is *NP-Complete*.

The Stochastic Block Model

Stochastic Block Model (SBM). Two "communities" of equal size V_1 and V_2 , each edge inside a community included with probability $p = \frac{a}{n}$, each edge across communities included with probability $q = \frac{b}{n} < p$.

The Stochastic Block Model

Reconstruction problem. Given graph generated by SBM, find original partition.

The Stochastic Block Model

Reconstruction problem. Given graph generated by SBM, find original partition.

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- |V₁| = |V₂|,
 G|_{V1}, G|_{V2} ~ random *a*-regular graphs
 G|_{V1}, G|_{V2} ~ random *b* regular bipartite graphs
- $G|_{E(V_1,V_2)} \sim \text{random } b\text{-regular bipartite graph.}$

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- $G|_{V_1}, G|_{V_2} \sim \text{random } a\text{-regular graphs}$
- $G|_{E(V_1,V_2)} \sim \text{random } b\text{-regular bipartite graph.}$

2-regular bipartite

Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA'16]. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- $G|_{V_1}, G|_{V_2} \sim \text{random } a\text{-regular graphs}$
- $G|_{E(V_1,V_2)} \sim \text{random } b\text{-regular bipartite graph.}$

When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- $a b > 2\sqrt{d}$ in SBM (weak)
- $a b > 2(\sqrt{a} \sqrt{b})\sqrt{b} + 2\log n$ in SBM (strong)
- $a b > 2\sqrt{d 1}$ in RSBM (strong)

Linearizations of *Belief Propagation*, advanced spectral methods (power and Lanczos method), SDP.

When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- $a b > 2\sqrt{d}$ in SBM (weak)
- $a b > 2(\sqrt{a} \sqrt{b})\sqrt{b} + 2\log n$ in SBM (strong)
- $a b > 2\sqrt{d 1}$ in RSBM (strong)

Linearizations of *Belief Propagation*, advanced spectral methods (power and Lanczos method), SDP.

Not a dynamics: nonlinear, different messages to different neighbors

Centralized, not easy to make distribute

(2n, d, b)-clustered Regular Graph. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- G is d regular,
- each $v \in V_i$ has b neighbors in V_{3-i} .

(2n, d, b)-clustered Regular Graph. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- G is d regular,
- each $v \in V_i$ has b neighbors in V_{3-i} .

Thm. If $G|_{V_1}$, $G|_{V_2}$ expanders and $\lambda_2/\lambda > 1$ (e.g. if $b \ll d/2$), averaging produces strong reconstruction in $\mathcal{O}(\log n)$ rounds.

(2n, d, b)-clustered Regular Graph. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- G is d regular,
- each $v \in V_i$ has b neighbors in V_{3-i} .

Thm. If $G|_{V_1}$, $G|_{V_2}$ expanders and $\lambda_2/\lambda > 1$ (e.g. if $b \ll d/2$), averaging produces strong reconstruction in $\mathcal{O}(\log n)$ rounds.

RSBM is (2n, d, b)-clustered regular with $G|_{V_1}, G|_{V_2}$ expanders w.h.p. \Longrightarrow **Cor.** Strong reconstruction $(a - b > 2\sqrt{d - 1})$

 $(2n, d, b, \gamma)$ -clustered Graph. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- every node has degree $d \pm \gamma d$
- each $v \in V_i$ has $b \pm \gamma d$ neighbors in V_{3-i} .

Thm. If $\min\{\lambda_2, \frac{a-b}{d}\} > \lambda$ and $\gamma = \mathcal{O}(\frac{a-b}{d} - \lambda_3)$ $\implies \mathcal{O}(\gamma^2/(\frac{a-b}{d} - \lambda_3)^2)$ -weak reconstruction.

Regular Clustered and Clustered Graphs

 $(2n, d, b, \gamma)$ -clustered Graph. A graph $G = (V_1 \bigcup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- every node has degree $d \pm \gamma d$
- each $v \in V_i$ has $b \pm \gamma d$ neighbors in V_{3-i} .

Thm. If $\min\{\lambda_2, \frac{a-b}{d}\} > \lambda$ and $\gamma = \mathcal{O}(\frac{a-b}{d} - \lambda_3)$ $\implies \mathcal{O}(\gamma^2/(\frac{a-b}{d} - \lambda_3)^2)$ -weak reconstruction.

Cor. If $a - b > \sqrt{d \log n}$ and $b > \frac{\log n}{n^2}$, SBM is $(2n, d, b, 6\sqrt{\frac{\log n}{d}})$ -clust. with $\min\{\lambda_2, 24\sqrt{\frac{\log n}{d}}\} > \lambda$ w.h.p. $\implies \mathcal{O}(\frac{d \log n}{(a-b)^2})$ -weak reconstruction.

Analysis: Roadmap

Analysis: Roadmap

 $P = D^{-1}A = \frac{1}{d}A \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, ..., \mathbf{v}_{2n} \text{ and real} \\ \text{eigenvalues } \lambda_1, ..., \lambda_{2n}.$

 $P = D^{-1}A = \frac{1}{d}A \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, \dots, \mathbf{v}_{2n} \text{ and real} \\ \text{eigenvalues } \lambda_1, \dots, \lambda_{2n}.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $P = D^{-1}A = \frac{1}{d}A \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, \dots, \mathbf{v}_{2n} \text{ and real} \\ \text{eigenvalues } \lambda_1, \dots, \lambda_{2n}.$

 $\mathbf{x}^{(t)} = P^{t} \cdot \mathbf{x}^{(0)} = \sum_{i} \lambda_{i}^{t} (\mathbf{v}_{i}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{v}_{i} \xrightarrow{t \to \infty} (\mathbf{v}_{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{v}_{1}$ Perron-Frobenius Theorem: $\lambda_{1} = 1, \ |\lambda_{i \neq 1}| < 1$

 $P = D^{-1}A = \frac{1}{d}A \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, ..., \mathbf{v}_{2n} \text{ and real} \\ \text{eigenvalues } \lambda_1, ..., \lambda_{2n}.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $\mathbf{v}_1 = \frac{1}{\sqrt{2n}} \mathbf{1}$

Regular clustered graphs $\implies P\chi = \left(\frac{a-b}{d}\right) \cdot \chi$

 $P = D^{-1}A = \frac{1}{d}A \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, \dots, \mathbf{v}_{2n} \text{ and real} \\ \text{eigenvalues } \lambda_1, \dots, \lambda_{2n}.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$

 $\mathbf{v}_1 = \frac{1}{\sqrt{2n}} \mathbf{1}$

Regular clustered graphs $\implies P\chi = \left(\frac{a-b}{d}\right) \cdot \chi$

 $P = D^{-1}A = \frac{1}{d}A \longrightarrow \text{symmetric} \implies \text{orthonormal} \\ \text{eigenvectors } \mathbf{v}_1, \dots, \mathbf{v}_{2n} \text{ and real} \\ \text{eigenvalues } \lambda_1, \dots, \lambda_{2n}.$

 $\mathbf{x}^{(t)} = P^t \cdot \mathbf{x}^{(0)} = \sum_i \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i$ $\mathbf{v}_1 = \frac{1}{\sqrt{2n}} \mathbf{1}$

Regular clustered graphs $\implies P\chi = \left(\frac{a-b}{d}\right) \cdot \chi$

If $\lambda < \frac{a-b}{d} = \lambda_2$ then $\mathbf{x}^{(t+1)} = \frac{1}{2n} (\mathbf{1}^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{2n} (\chi^\mathsf{T} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$ with $\|\mathbf{e}^{(t)}\| = \left\| \sum_{i=3}^{2n} \lambda_i^t (\mathbf{v}_i^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{v}_i \right\| \le \lambda^t \|\mathbf{x}^{(0)}\| \le \lambda^t \sqrt{2n}$

If
$$\lambda(1+\delta) < \frac{a-b}{d} = \lambda_2$$
 then
 $\mathbf{x}^{(t)} = \frac{1}{2n} (\mathbf{1}^{\mathsf{T}} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{2n} (\chi^{\mathsf{T}} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$
with $\|\mathbf{e}^{(t)}\| \le \lambda^t \sqrt{2n}$

If
$$\lambda(1+\delta) < \frac{a-b}{d} = \lambda_2$$
 then
 $\mathbf{x}^{(t)} = \frac{1}{2n} (\mathbf{1}^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{2n} (\chi^\mathsf{T} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}$
with $\|\mathbf{e}^{(t)}\| \le \lambda^t \sqrt{2n}$
 $\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)} = (\chi^\mathsf{T} \mathbf{x}^{(0)}) \lambda_2^{t-1} (\lambda_2 - 1) \chi + \underbrace{\mathbf{e}^{(t)} - \mathbf{e}^{(t-1)}}_{\ll \lambda_2^{t-1} \text{ if } t = \Omega(\log n)}$

$$If \frac{\lambda(1+\delta) < \frac{a-b}{d} = \lambda_2}{\mathbf{x}^{(t)} = \frac{1}{2n} (\mathbf{1}^\mathsf{T} \mathbf{x}^{(0)}) \mathbf{1} + \lambda_2^t \frac{1}{2n} (\chi^\mathsf{T} \mathbf{x}^{(0)}) \chi + \mathbf{e}^{(t)}}$$
with $\|\mathbf{e}^{(t)}\| \le \lambda^t \sqrt{2n}$

$$\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)} = (\chi^\mathsf{T} \mathbf{x}^{(0)}) \lambda_2^{t-1} (\lambda_2 - 1) \chi + \underbrace{\mathbf{e}^{(t)} - \mathbf{e}^{(t-1)}}_{\ll \lambda_2^{t-1} \text{ if } t = \Omega(\log n)}$$

$$sign(\mathbf{x}^{(t)}(u) - \mathbf{x}^{(t-1)}(u)) = sign(\chi(u)) \text{ or } - sign(\chi(u))$$

Corollary. RSBM is (2n, d, b)-clust. regular and $\lambda = \mathcal{O}(\frac{1}{\sqrt{d}}) \ll \frac{a-b}{d}$ by random degree k lifts [Friedman & Kohler] \implies Strong reconstruction in log n w.h.p.

 $\operatorname{sign}(\mathbf{x}^{(t)}(u) - \mathbf{x}^{(t-1)}(u)) = \operatorname{sign}(\chi(u)) \text{ or } -\operatorname{sign}(\chi(u))$

More Communities

(k, n, d, b)-clustered Regular Graph. A graph $G = (\bigcup_{i=1}^{k} V_i, E)$ s.t.

- $|V_1| = \cdots = |V_k|,$
- every node has degree d = a + (k 1)b
- each $v \in V_i$ has b neighbors in V_j for $j \neq i$.

 $\frac{a-b}{d}$ eigenval. with $\mathbf{v}_2, ..., \mathbf{v}_k$ eigenvec. s.t. constant on each V_i and $\mathbf{1}^{\mathsf{T}}\mathbf{v}_i = 0$.

More Communities

(k, n, d, b)-clustered Regular Graph. A graph $G = (\bigcup_{i=1}^{k} V_i, E)$ s.t.

- $|V_1| = \cdots = |V_k|,$
- every node has degree d = a + (k 1)b
- each $v \in V_i$ has b neighbors in V_j for $j \neq i$.

 $\frac{a-b}{d}$ eigenval. with $\mathbf{v}_2, ..., \mathbf{v}_k$ eigenvec. s.t. constant on each V_i and $\mathbf{1}^{\mathsf{T}}\mathbf{v}_i = 0$.

Thm. If $\frac{a-b}{d} > \lambda(1+\delta)$ with $\lambda = \max\{\lambda_{k+1}, |\lambda_{kn}|\}$, then $\Theta(\log n)$ parallel run of averaging gives strong reconstruction in $\mathcal{O}(\log n)$ rounds.

 $\left(\frac{a-b}{d} = \lambda_2 = \dots = \lambda_k\right)$

Future Work

Non-regular SBM.

How much "weak" with many communities?

Future Work

Non-regular SBM.

How much "weak" with many communities?

Sparisification.

At each round, pick an edge u.a.r. (*population protocols*): those two nodes averages their values. *Simulations.* Does not (seem to) work for $a - b \ll \log n$. *Analysis.* Should work for $a - b \gg \log n$.

Future Work

Non-regular SBM.

How much "weak" with many communities?

Sparisification.

At each round, pick an edge u.a.r. (*population protocols*): those two nodes averages their values. *Simulations.* Does not (seem to) work for $a - b \ll \log n$. *Analysis.* Should work for $a - b \gg \log n$.

Planted Clique.

 $G_{n,p} \cup$ "clique of $\sqrt{n(1+\delta)}$ nodes": Does averaging identify the clique?

Thank You!