Stabilizing Consensus with Many Opinions

Emanuele Natale*
joint work with
Luca Becchetti*, Andrea Clementi ${ }^{\dagger}$, Francesco Pasquale* and Luca Trevisan ${ }^{\ddagger}$

SAPIENZA

* universita' degli studi di roma

UToNergata

ACM-SIAM Symposium on Discrete Algorithms January 10-12, 2016
Crystal Gateway Marriott Arlington, Virginia, USA

Stabilizing Almost-Consensus

A set of nodes each having one color out of a set Σ.

Initial colors are called valid.

Stabilizing Almost-Consensus

At the start of each round, nodes uptate their color,

according to the given communication model and protocol.

Stabilizing Almost-Consensus

At the end of each round, an F-dynamic adversary can change the color of F nodes,

possibly chosing different subsets of nodes over different rounds.

Stabilizing Almost-Consensus

Except for a small number of nodes we want to reach consensus (almost consensus),

on any valid color (almost validity),

Stabilizing Almost-Consensus

Almost-consensus has to be preserved for any

 poly (n) rounds,
even if the adversary changes colors at each round (almost stability).

Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees that, w.h.p., for some $\gamma<1$, from any initial conf., in a finite number of rounds, the system reaches a set of conf.s where $n-\mathcal{O}\left(n^{\gamma}\right)$ nodes

- hold the same color (almost consensus),
- the color was in the initial conf. (almost validity),
- and the convergence hold for any poly (n) rounds (almost stability).

Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees that, w.h.p., for some $\gamma<1$, from any initial conf., in a finite number of rounds, the system reaches a set of conf.s where $n-\mathcal{O}\left(n^{\gamma}\right)$ nodes

- hold the same color (almost consensus),
- the color was in the initial conf. (almost validity),
- and the convergence hold for any poly (n) rounds (almost stability).

Cf. classical byzantine agreement: agreement, validity and termination.

The Setting

Communication model. Uniform Gossip model: Each node in one round can communicate with one node chosen u.a.r.

Protocol constraints. simple rule (dynamics): Anonymous, $O(\log |\Sigma|)$ local memory and message size, counters of non-constant length, ...

Motivations. Biological systems, chemical reaction networks, social networks, sensor networks.

Previous Work: 3-Median Dynamics

Each node observes the color of three other nodes chosen u.a.r....

Previous Work: 3-Median Dynamics

...and changes its color according to the median of these three...

Previous Work: 3-Median Dynamics

Colors are totally ordered: $\ldots<\bigcirc<\bigcirc<\bigcirc<\ldots$

The 3-Median Process

Almost consensus? Almost validity? Almost stability?

3-Median Dynamics

Theorem (Doerr, Goldberg, Minder, Sauerwald, Scheideler ' ${ }^{11}$). For any \sqrt{n}-bounded adversary, the 3-median computes an almost stable value between the $(n / 2-c \sqrt{n \log n})$-largest and the
$(n / 2+c \sqrt{n l o g n})$ - largest of the initial values, in
$\mathcal{O}(\log k \cdot \log \log n+\log n)$ rounds w.h.p.

3-Median Dynamics

Theorem (Doerr, Goldberg, Minder, Sauerwald, Scheideler ' ${ }^{11}$). For any \sqrt{n}-bounded adversary, the 3-median computes an almost stable value between the $(n / 2-c \sqrt{n \log n})$-largest and the
$(n / 2+c \sqrt{n \log n})$ - largest of the initial values, in
$\mathcal{O}(\log k \cdot \log \log n+\log n)$ rounds w.h.p.
Does 3-median guarantee Stabilizing Almost Consensus?

- Almost consensus
- Almost validity
- Almost stability

3-Median Dynamics

Theorem (Doerr, Goldberg, Minder, Sauerwald, Scheideler '11). For any \sqrt{n}-bounded adversary, the 3-median computes an almost stable value between the $(n / 2-c \sqrt{n \log n})$-largest and the
$(n / 2+c \sqrt{n \log n})$ - largest of the initial values, in
$\mathcal{O}(\log k \cdot \log \log n+\log n)$ rounds w.h.p.
Does 3-median guarantee Stabilizing Almost Consensus?

- Almost consensus
- Almost validity
- Almost stability

3-Median Dynamics

Theorem (Doerr, Goldberg, Minder, Sauerwald, Scheideler '11). For any \sqrt{n}-bounded adversary, the 3-median computes an almost stable value between the $(n / 2-c \sqrt{n \log n})$-largest and the
$(n / 2+c \sqrt{n \log n})$ - largest of the initial values, in
$\mathcal{O}(\log k \cdot \log \log n+\log n)$ rounds w.h.p.
Does 3-median guarantee Stabilizing Almost Consensus?

- Almost consensus
- Almost validity?
- Almost stability

3-Median Dynamics

3-Median Dynamics

3-Median Dynamics

No almost validity!

The adversary can manipulate the system.

The 3-Majority Dynamics

Each node observes the color of three other nodes chosen u.a.r....

The 3-Majority Dynamics

...and changes its color according to the majority of these three (breaking ties u.a.r.).

The Majority Process

Almost consensus? Almost validity? Almost stability?

3-Majority for Plurality Consensus

$c_{i}^{(t)}:=\mid\{i$-colored nodes $\} \mid$ color 1 is the plurality

Initial bias s : For all $i \neq 1, c_{1}-c_{i} \geq s$
Theorem (Becchetti, Clementi, Natale, Pasquale, Silvestri, Trevisan '14).

- From any configuration with $k<\sqrt[3]{n}$ colors, with bias $s=\Omega(\sqrt{k n \log n})$, the 3-majority converges to the plurality color in $O(k \log n)$ rounds w.h.p., against a $O(\sqrt{n})$-bounded dynamic adversary.
- From configurations where every color is supported by almost n / k nodes, convergence takes $\Omega(k)$ rounds w.h.p.

3-Majority vs 3-Median

3-Majority with Bias

$c_{i}^{(t)}:=\mid\{i$-colored nodes $\} \mid \quad$ color 1 is the plurality
Initial bias s : For all $i \neq 1, c_{1}-c_{i} \geq s$

Our Contribution: 3-Majority without Bias

What if we start from any initial configuration, i.e. there may be no initial bias?

Theorem. Let $k \leq n^{\alpha}$, for a suitable constant $\alpha<1$, and $F=\mathcal{O}\left(\sqrt{n} /\left(k^{\frac{5}{2}} \log n\right)\right)$. The 3 -majority dynamics is a stabilizing almost-consensus protocol against any F-dynamic adversary, with convergence time $\mathcal{O}\left(\left(k^{2} \sqrt{\log n}+k \log n\right)(k+\log n)\right)$, w.h.p.

Our Contribution: 3-Majority without Bias

What if we start from any initial configuration, i.e. there may be no initial bias?

Theorem. Let $k \leq n^{\alpha}$, for a suitable constant $\alpha<1$, and $F=\mathcal{O}\left(\sqrt{n} /\left(k^{\frac{5}{2}} \log n\right)\right)$. The 3-majority dynamics is a stabilizing almost-consensus protocol against any F-dynamic adversary, with convergence time $\mathcal{O}\left(\left(k^{2} \sqrt{\log n}+k \log n\right)(k+\log n)\right)$, w.h.p.

- First solution of the almost-stabilizing consensus problem in the uniform gossip model.
- Closes open question on convergence of 3 -majority for $|\Sigma|>2$.

The Problem without Bias

Very small gap between the plurality colors and second colors: one of the second colors may become plurality.

Analysis of 3-Majority

$C_{i}^{(t)}:=$ number of nodes supporting color i at round t.
$\mu_{j}(\mathbf{c})=\mathbf{E}\left[C_{j}^{(t+1)} \mid \mathbf{C}^{(t)}=\mathbf{c}\right]$
Lemma 1. For any color j it holds

$$
\mu_{j}(\mathbf{c})=c_{j}\left(1+\frac{c_{j}}{n}-\frac{1}{n^{2}} \sum_{h \in[k]} c_{h}^{2}\right) .
$$

Lemma 2. Let 1 be a plurality color and j be a second-most-frequent color, then

$$
\mu_{1}-\mu_{j} \geqslant s(\mathbf{c})\left(1+\frac{c_{1}}{n}\left(1-\frac{c_{1}}{n}\right)\right) .
$$

Analysis of 3-Majority

$C_{i}^{(t)}:=$ number of nodes supporting color i at round t.
$\mu_{j}(\mathbf{c})=\mathbf{E}\left[C_{j}^{(t+1)} \mid \mathbf{C}^{(t)}=\mathbf{c}\right]$
Lemma 1. For any color j it holds

$$
\mu_{j}(\mathbf{c})=c_{j}\left(1+\frac{c_{j}}{n}-\frac{1}{n^{2}} \sum_{h \in[k]} c_{h}^{2}\right) .
$$

Lemma 2. Let 1 be a plurality color and j be a second-most-frequent color, then

$$
\mu_{1}-\mu_{j} \geqslant s(\mathbf{c})\left(1+\frac{c_{1}}{n}\left(1-\frac{c_{1}}{n}\right)\right) .
$$

Indices are random variables: without bias, cannot concentrate on who is the plurality.

New Approach: Minorities Disappear

Lemma. Let c be the conf. at round t with j supported colors. For any color i it holds,

$$
\mathbf{E}\left[C_{i}^{(t+1)} \mid \mathbf{C}^{(t)}=\mathbf{c}\right] \leq c_{i}\left(1+\frac{c_{i}}{n}-\frac{1}{j}\right)
$$

A "dying phase"

Lemma. Let \mathbf{c} be any conf. with $j \leq n^{1 / 3-\varepsilon}$ supported colors ($\forall \varepsilon>0$ const), and such that an color i exists with $c_{i} \leq n / j-\sqrt{j n \log n}$. Within $t=\mathcal{O}(j \log n)$ rounds color i becomes $\mathcal{O}\left(j^{2} \log n\right)$ w.h.p.

$$
c_{i} \leq n / j-\sqrt{j n \log n} \xrightarrow[\text { w.h.p. }]{t=\mathcal{O}(j \log n)} c_{i}=\mathcal{O}\left(j^{2} \log n\right)
$$

A "dying phase"

Lemma. Let \mathbf{c} be any conf. with $j \leq n^{1 / 3-\varepsilon}$ supported colors ($\forall \varepsilon>0$ const), and such that an color i exists with $c_{i} \leq n / j-\sqrt{j n \log n}$. Within $t=\mathcal{O}(j \log n)$ rounds color i becomes $\mathcal{O}\left(j^{2} \log n\right)$ w.h.p.

$$
c_{i} \leq n / j-\sqrt{j n \log n} \xrightarrow[\text { w.h.p. }]{t=\mathcal{O}(j \log n)} c_{i}=\mathcal{O}\left(j^{2} \log n\right)
$$

Simmetry Breaking

Simmetry Breaking

Simmetry Breaking

Lemma 42.
$\left\{X_{t}\right\}_{t}$ a Markov chain with finite state space Ω, $f: \Omega \rightarrow \mathbf{N}, Y_{t}=f\left(X_{t}\right)$,
$m \in[n]$ a "target value" and $\tau=\inf \left\{t \in \mathbb{N}: Y_{t} \geq m\right\}$. If $\forall x \in \Omega$ with $f(x) \leq m-1$, it holds

1. Positive drift: $\mathbf{E}\left[Y_{t+1} \mid X_{t}=x\right] \geqslant f(x)+\lambda(\lambda>0)$,
2. Bounded jumps: $\operatorname{Pr}\left\{Y_{\tau} \geq \alpha m\right\} \leq \alpha m / n,(\alpha>1)$, then

$$
\mathbf{E}[\tau] \leq 2 \alpha \frac{m}{\lambda}
$$

Simmetry Breaking

Lemma. Let conath configuration with j supported colors. Within $t=\mathcal{O}\left(j^{2} \sqrt{\log n}\right)$ rounds it holds that

$$
\operatorname{Pr}\left(\exists i \text { such that } C_{i}^{(t)} \leq n / j-\sqrt{j n \log n}\right) \geq \frac{1}{2}
$$

Proof. Let $\mathbf{m}(t)$ be the index of minimum-size color and apply Lemma 42 with $f(\mathbf{c})=C_{\mathbf{m}(t)}$.

Handling the Adversary

Handling the Adversary

Handling the Adversary

$\mathbf{E}\left[C_{i}^{(t+1)} \mid \mathbf{C}^{(t)}=\mathbf{c}\right] \leq c_{i}\left(1+\frac{c_{i}}{n}-\frac{1}{j}\right)$

Handling the Adversary

Handling the Adversary

Handling the Adversary

Open Problems

- Convergence in time $\mathcal{O}(k \log n)$?
- Stabilizing consensus on random/expander graphs?

Thank you!

