Self-Stab. Clock Sync. with 3-bit Messages

Emanuele Natale[†]

joint work with Lucas Boczkowski* and Amos Korman*

ACM Symposium on Principles of Distributed Computing July 25-29, 2016 Chicago, Illinois

Weak Communication Model

- Chaotic
- Anonymous

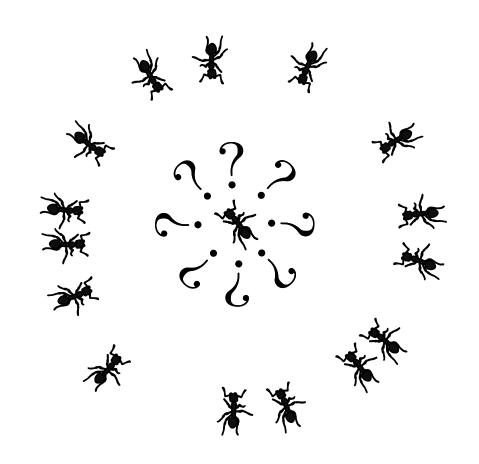
- Passive
- Parsimonious

Weak Communication Model

- Chaotic
- Anonymous

PULL(h, ℓ) model [Demers '88]: at each round each agent can observe h other agents chosen independently and uniformly at random, and shows ℓ bits to her observers.

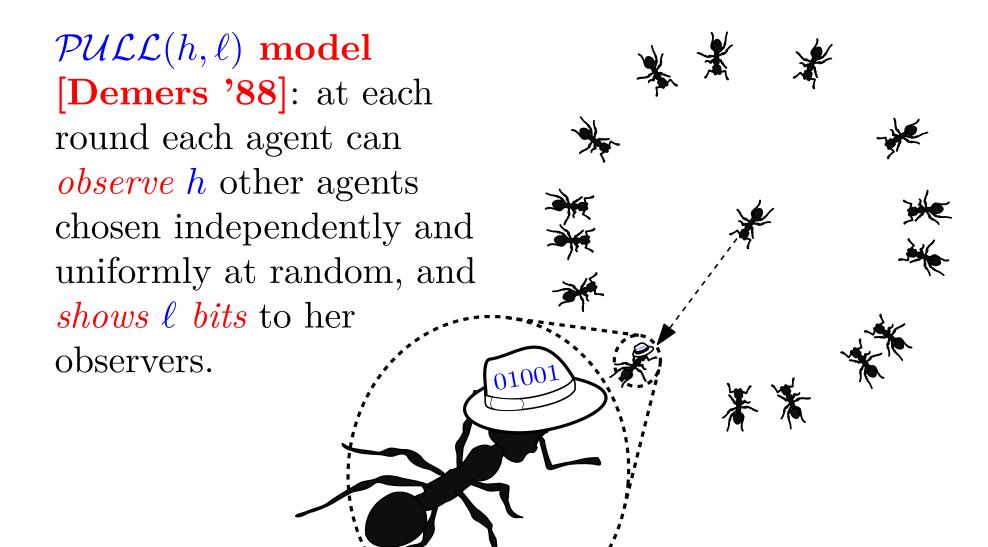
- Passive
- Parsimonious



Weak Communication Model

- Chaotic
- Anonymous

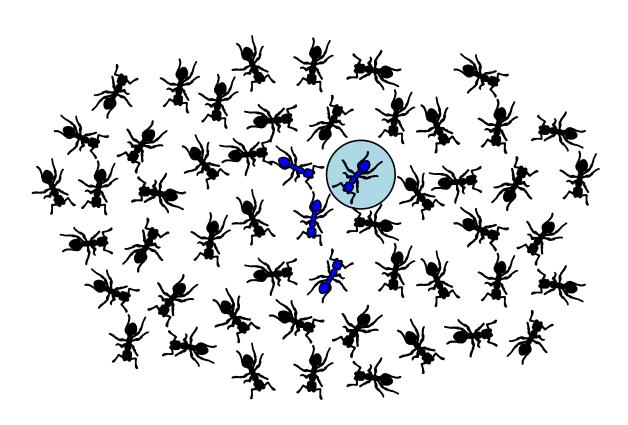
- Passive
- Parsimonious



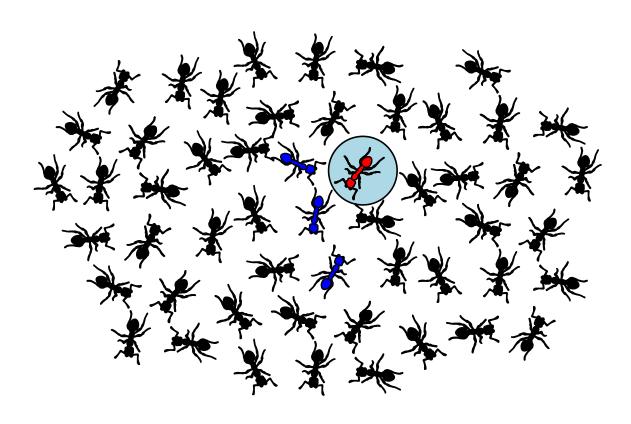
Sources' bits may change in response to external environment



Sources' bits may change in response to external environment

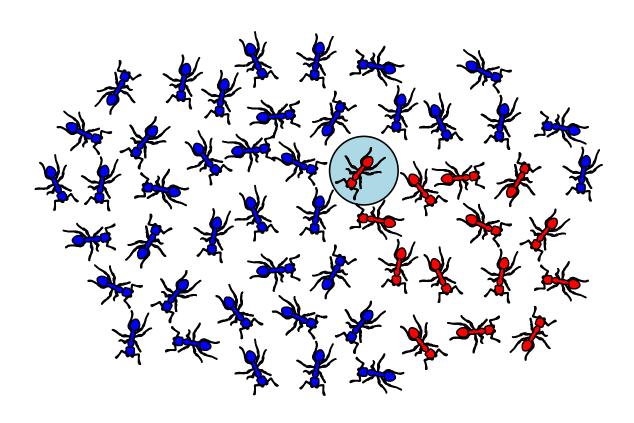


Sources' bits may change in response to external environment



Self-Stabilization Bit Dissemination (or Broadcast or Rumor Spreading)

Sources' bits may change in response to external environment



blue vs red: $39/14 \approx 2.8$

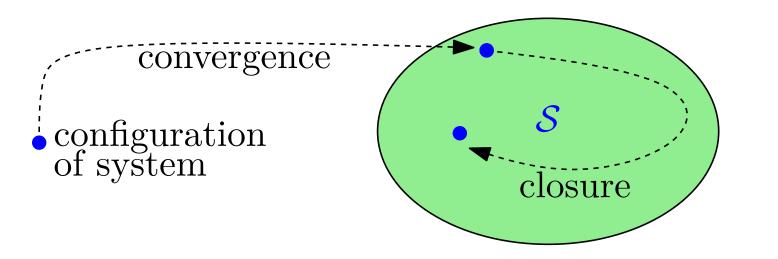
(Probabilistic) self-stabilization:

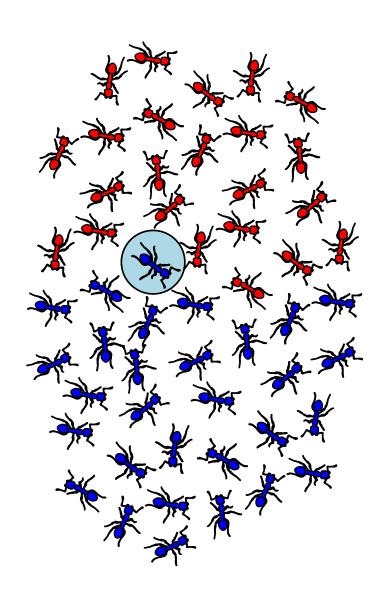
```
S := {"correct configurations of the system" }
(= consensus on source's bit)
```

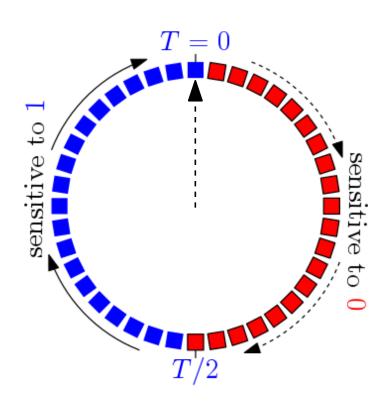
- Convergence. From any initial configuration, the system reaches S (w.h.p.)
- Closure. If in S, the system stays in S (w.h.p.)

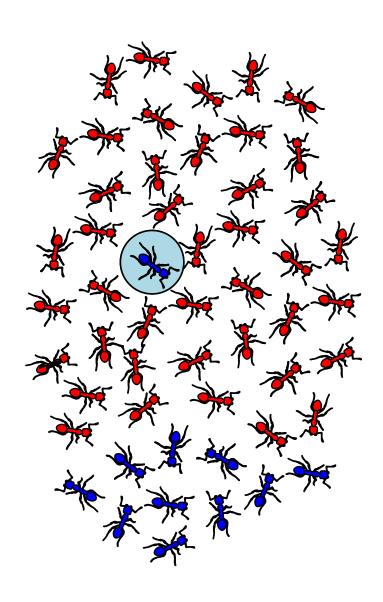
(Probabilistic) Self-stabilizing algorithm:

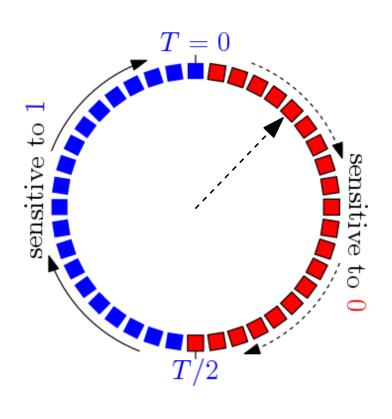
guarantees convergence and closure w.r.t. \mathcal{S} (w.h.p.)

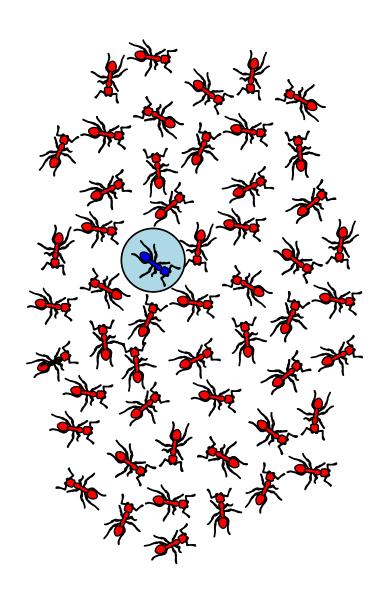


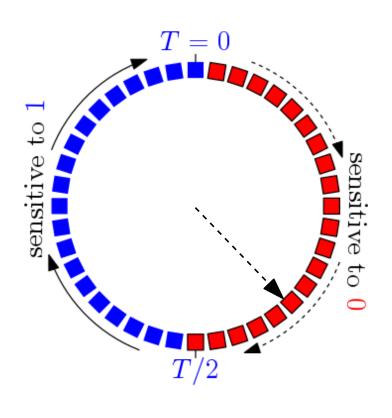


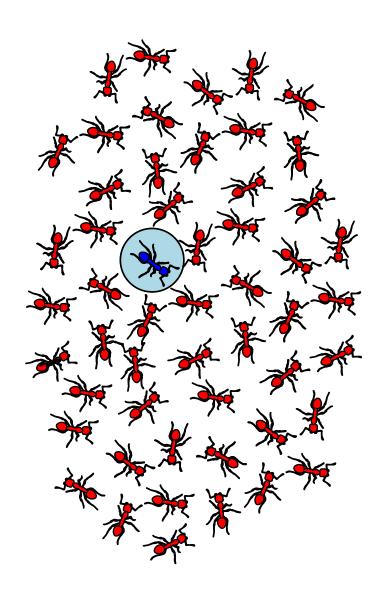


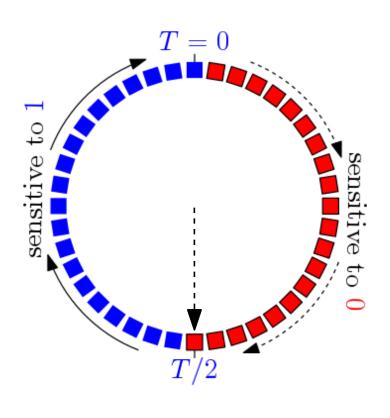


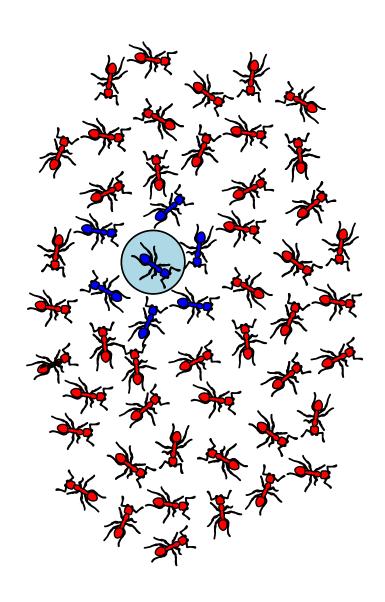


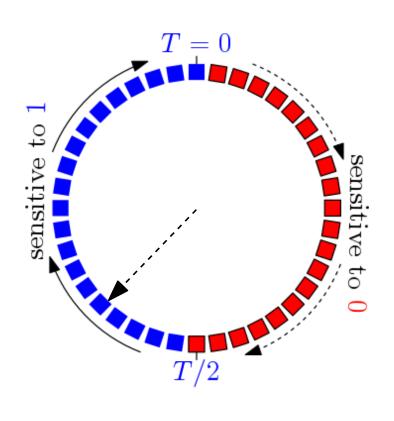


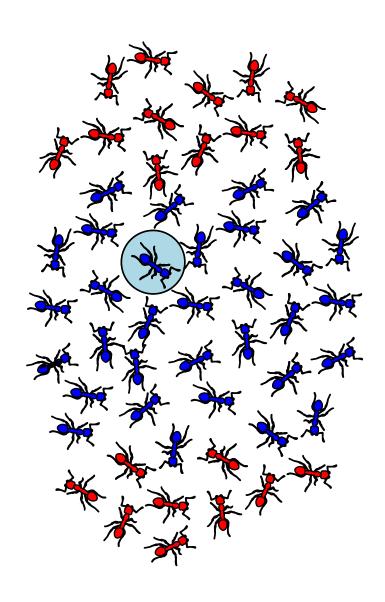


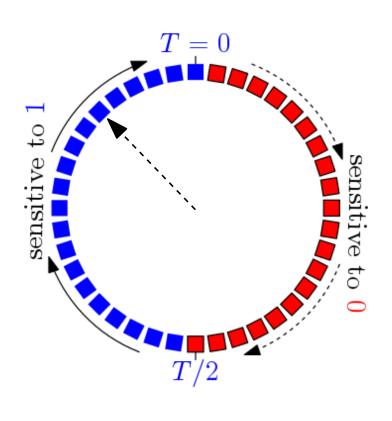


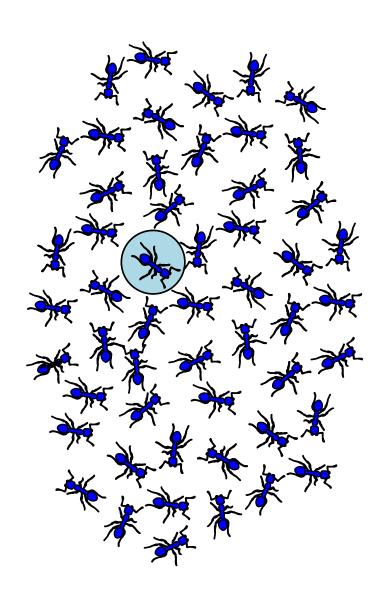


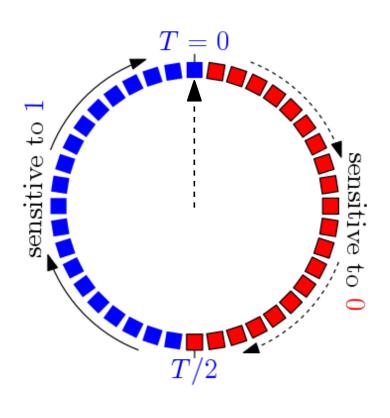




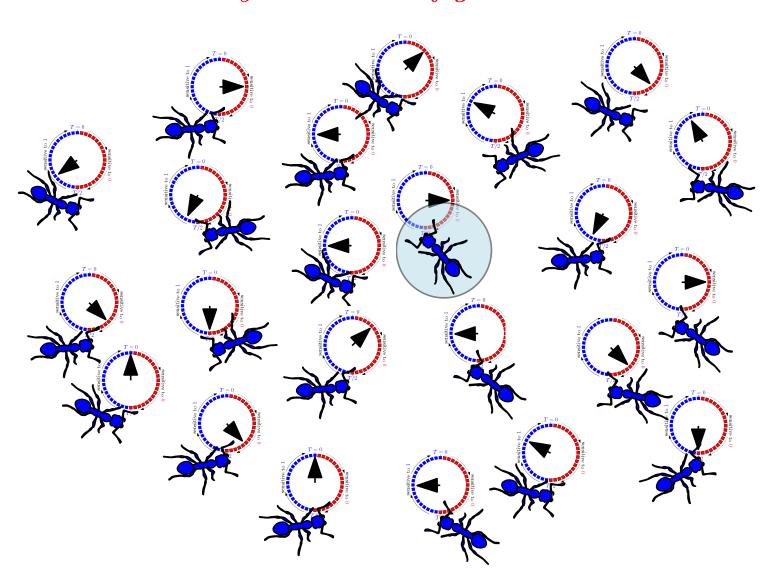




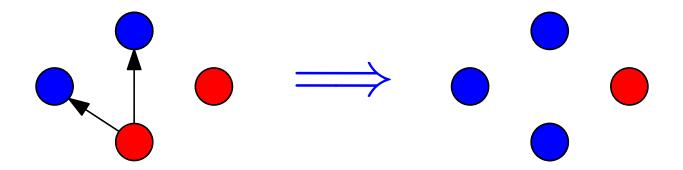




Self-stablizing algorithms converge from any initial configuration

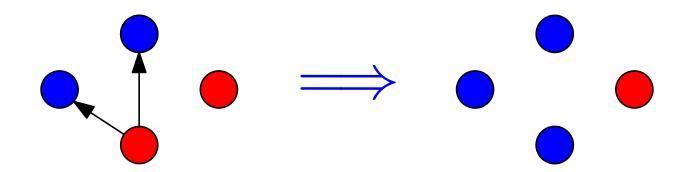


Self-Stab. Clock Sync. in $\mathcal{PULL}(2, \log n)$ Model

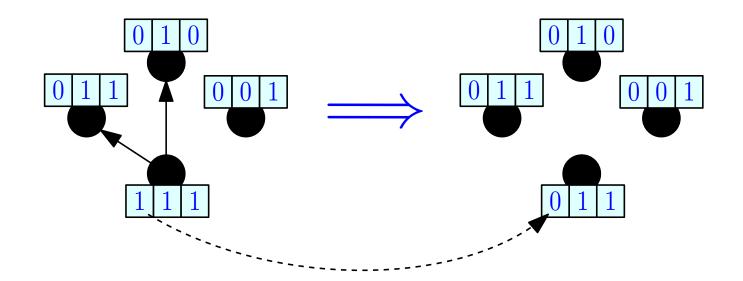


2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.

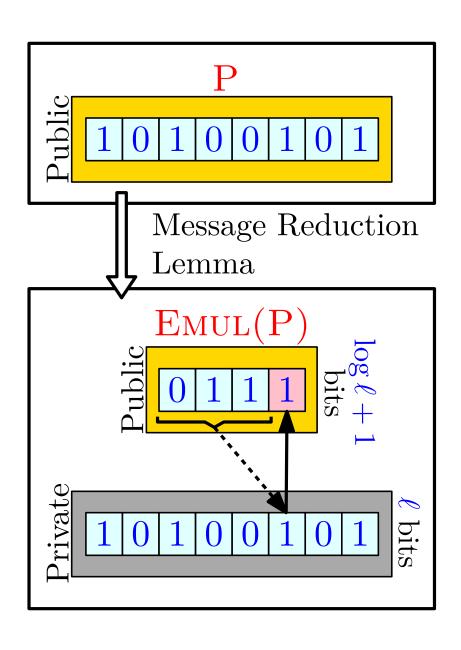
Self-Stab. Clock Sync. in $\mathcal{PULL}(2, \log n)$ Model



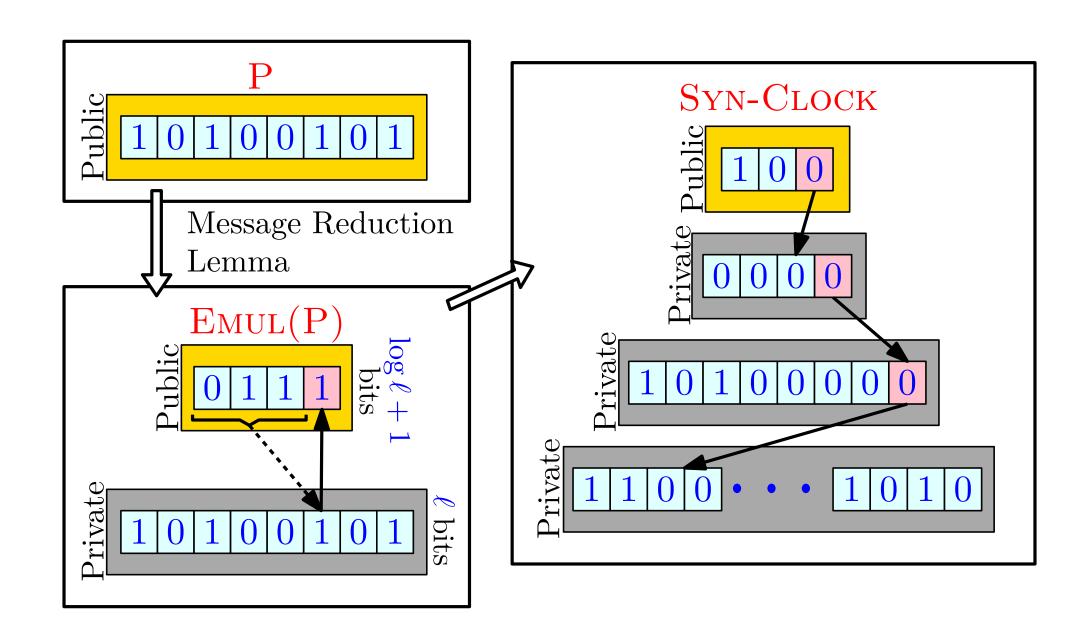
2-Majority dynamics [Doerr et al. '11]. Converge to consensus in $\mathcal{O}(\log n)$ rounds with high probability.



The Message Reduction Lemma



The Message Reduction Lemma



Results

Theorem (Clock Syncronization). Syn-Clock is a *self-stabilizing* clock synchronization protocol which synchronizes a clock modulo T in $\tilde{\mathcal{O}}(\log n \log T)$ rounds w.h.p. using 3-bit messages.

Theorem (Bit Dissemination).

Syn-Phase-Spread is a *self-stabilizing* Bit Dissemination protocol which converges in $\tilde{\mathcal{O}}(\log n)$ rounds w.h.p using 3-bit messages.

