Dynamics, Consensus, and Distributed Community Detection

Emanuele Natale^{*} joint work with Luca Becchetti^{*}, Andrea Clementi^{*}, Francesco Pasquale^{*} and Luca Trevisan[□]

HIGHLIGHTS OF ALGORITHMS Paris, June 6-8, 2016

The Morale

Dynamics are cool!

At each round, each agent observes the states of a fixed-size sample of neighbors, and updates her state accordingly.

At each round, each agent observes the states of a fixed-size sample of neighbors, and updates her state accordingly.

At each round, each agent observes the states of a fixed-size sample of neighbors, and updates her state accordingly.

At each round, each agent observes the states of a fixed-size sample of neighbors, and updates her state accordingly.

Uniform PULL model \rightarrow Complete graph

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed symmetric function of states of neighbors.

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed symmetric function of states of neighbors.

Examples of Dynamics

• 3-Median dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed symmetric function of states of neighbors.

- 3-Median dynamics
- 3-Majority dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed symmetric function of states of neighbors.

- 3-Median dynamics
- 3-Majority dynamics
- Undecided-state dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed symmetric function of states of neighbors.

- 3-Median dynamics
- 3-Majority dynamics
- Undecided-state dynamics
- Averaging dynamics

Very simple distributed algorithms: For every graph, agent and round, states are updated according to fixed symmetric function of states of neighbors.

- 3-Median dynamics
- 3-Majority dynamics
- Undecided-state dynamics
- Averaging dynamics (non-uniform PULL)

The Power of Dynamics

3-Median dynamics [Doerr et al. '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p., even if $\mathcal{O}(\sqrt{n})$ states are arbitrarily changed at each round $(\mathcal{O}(\sqrt{n})$ -bounded adversary).

The Power of Dynamics

3-Median dynamics [Doerr et al. '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p., even if $\mathcal{O}(\sqrt{n})$ states are arbitrarily changed at each round $(\mathcal{O}(\sqrt{n})$ -bounded adversary).

3-Majority dynamics [Becchetti et al. '14, '16]. If plurality has bias $\mathcal{O}(\sqrt{kn \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n/k})$ -bounded adversary. Without bias, converges in $\operatorname{poly}(k)$. *h*-majority converges in $\Omega(k/h^2)$.

The Power of Dynamics

3-Median dynamics [Doerr et al. '11]. Converge to $\mathcal{O}(\sqrt{n \log n})$ approximation of median of system in $\mathcal{O}(\log n)$ rounds w.h.p., even if $\mathcal{O}(\sqrt{n})$ states are arbitrarily changed at each round $(\mathcal{O}(\sqrt{n})$ -bounded adversary).

3-Majority dynamics [Becchetti et al. '14, '16]. If plurality has bias $\mathcal{O}(\sqrt{kn \log n})$, converges to it in $\mathcal{O}(k \log n)$ rounds w.h.p., even against $o(\sqrt{n/k})$ -bounded adversary. Without bias, converges in $\operatorname{poly}(k)$. *h*-majority converges in $\Omega(k/h^2)$.

Undecided-State dynamics [Becchetti et al. '15]. If majority/second-majority $(c_{maj}/c_{2^{nd}maj})$ is at least $1 + \epsilon$, system converges to plurality within $\tilde{\Theta}(\sum_{i} c_{i}^{2}/c_{maj}^{2})$ rounds w.h.p.

A Global Measure of Bias

Dynamics can solve Consensus, Median and Majority: trivial in centralized setting.

Dynamics can solve Consensus, Median and Majority: trivial in centralized setting.

Can dynamics solve a problem non-trivial in centralized setting?

Dynamics can solve Consensus, Median and Majority: trivial in centralized setting.

Can dynamics solve a problem non-trivial in centralized setting?

Averaging dynamics. P matrix of simple random walk on a graph, $x^{(t)}$ config. at time t. Update rule $x^{(t+1)} = P \cdot x^{(t)}$.

Dynamics can solve Consensus, Median and Majority: trivial in centralized setting.

Can dynamics solve a problem non-trivial in centralized setting?

Averaging dynamics. P matrix of simple random walk on a graph, $x^{(t)}$ config. at time t. Update rule $x^{(t+1)} = P \cdot x^{(t)}$.

x is eigenvector of $P = D^{-1}A$ iff $D^{1/2}x$ is eigenvector of $N = D^{-1/2}AD^{-1/2}$.

From Consensus to Community Detection

Stochastic Block Model (SBM). Two "communities" of equal size V_1 and V_2 , each edge inside a community included with probability p, each edge across communities included with probability q < p.

Reconstruction problem. Given graph generated by SBM, find original partition.

Clustering via a Dynamics

Expected matrix
$$\mathbb{E}[P] = \begin{pmatrix} p & \dots & p & q & \dots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \dots & p & q & \dots & q \\ q & \dots & q & p & \dots & p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \dots & q & p & \dots & p \end{pmatrix}$$

Clustering via a Dynamics

Expected
$$\mathbb{E}[P] = \begin{pmatrix} p & \dots & p & q & \dots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \dots & p & q & \dots & q \\ q & \dots & q & p & \dots & p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \dots & q & p & \dots & p \end{pmatrix}$$

Second eigenvector: $\chi = (1, ..., 1, -1, ..., -1)$

Clustering via a Dynamics

Expected
$$\mathbb{E}[P] = \begin{pmatrix} p & \dots & p & q & \dots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \dots & p & q & \dots & q \\ q & \dots & q & p & \dots & p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \dots & q & p & \dots & p \end{pmatrix}$$

Second eigenvector: $\chi = (1, ..., 1, -1, ..., -1)$

[Becchetti et al. '16] If $x^{(t+1)} - x^{(t)} > 0$ you are blue, if $x^{(t+1)} - x^{(t)} < 0$ you are red: distributed clustering on SBM and other *clusterized* models in $\mathcal{O}(\log n)$ (no dependency on mixing time).

Thank you!