KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation

Emanuele Natale ${ }^{\dagger}$ joint work with Michele Borassi*

24rd Annual European Symposium on Algorithms (ESA 2016)
22-26 August, 2016
Aarhus, Denmark

Centrality Measures in (Complex) Networks

Examples of A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality, D) Degree centrality, E) Harmonic Centrality and F) Katz centrality of the same graph*.

Centrality Measures in (Complex) Networks

Betweenness centrality:
$\sigma(x)=\frac{1}{n(n-1)} \sum_{s \neq x \neq t} \frac{\sigma_{s t}(x)}{\sigma_{s t}}$
$\sigma_{s t}:=$ \# shortest paths from s to t
$\sigma_{s t}(x):=$ \# shortest paths
from s to t through x

Centrality Measures in (Complex) Networks

Prob. $\operatorname{Pr}(X)$ of being in a shortest path
Betweenness centrality:
$\sigma(x)=\frac{1}{n(n-1)} \sum_{s \neq x \neq t} \frac{\sigma_{s t}(x)}{\sigma_{s t}}$
$\sigma_{s t}:=\#$ shortest paths from s to t
$\sigma_{s t}(x):=\#$ shortest paths
from s to t through x

Centrality Measures in (Complex) Networks

Prob. $\operatorname{Pr}(X)$ of being in a shortest path
Betweenness centrality:
$\sigma(x)=\frac{1}{n(n-1)} \sum_{s \neq x \neq t} \frac{\sigma_{s t}(x)}{\sigma_{s t}}$
$\sigma_{s t}:=\#$ shortest paths from
s to t
$\sigma_{s t}(x):=\#$ shortest paths
from s to t through x

[Brandes '01]: betweenness of all nodes in $\mathcal{O}(m n)$
[Borassi et al. '15]: betweenness of a node requires $\Omega\left(n^{2-\epsilon}\right)$ on sparse graphs (assuming SETH)

Random Approximation of Centrality

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow$ approx. of closeness centrality w.h.p. in $\mathcal{O}(C B) \cdot \mathcal{O}(S S S P)$

Random Approximation of Centrality

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow$ approx. of closeness centrality w.h.p. in $\mathcal{O}(C B) \cdot \mathcal{O}(S S S P)$

Betweenness centrality:
Idea: samples $s, t \in V$ and give 1 point to x if x is in the $s t$-shortest path

Random Approximation of Centrality

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow$ approx. of closeness centrality w.h.p. in $\mathcal{O}(C B) \cdot \mathcal{O}(S S S P)$

Betweenness centrality:
Idea: samples $s, t \in V$ and give 1 point to x if x is in the $s t$-shortest path
......, Riondato and Upfal [KDD '16]:
ABRA* ϵ-approx. in time
$\mathcal{O}(g(\mathrm{RA})) \cdot \mathcal{O}(s t-S P)$

Random Approximation of Centrality

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow$ approx. of closeness centrality w.h.p. in $\mathcal{O}(C B) \cdot \mathcal{O}(S S S \underset{\underset{\downarrow}{P})}{ }$

Betweenness centrality: \#samples shortest paths

Idea: samples $s, t \in V$ and give 1 point to x if x is in the $s t$-shortest path
......, Riondato and Upfal [KDD '16]:
ABRA* ϵ-approx. in time
$\mathcal{O}(g(\mathrm{RA})) \cdot \mathcal{O}(s t-S P)$
\#samples shortest paths

Random Approximation of Centrality

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow$ approx. of closeness centrality w.h.p. in $\mathcal{O}(C B) \cdot \mathcal{O}(S S S P)$

Betweenness centrality:
Idea: samples $s, t \in V$ and give 1 point to x if x is in the $s t$-shortest path
......, Riondato and Upfal [KDD '16]:
ABRA* ϵ-approx. in time
$\mathcal{O}(g(\mathrm{RA})) \cdot \mathcal{O}(s t-S P)$
Rademacher Averages.
We could, but we keep it simple.

KADABRA: Overview

Input: graph $G=(V, E)$, error prob. δ, error approx. λ

1. ... 2. ... 3....
2. foreach $v \in V$ do $\tilde{\mathbf{b}}(v) \leftarrow 0$
3. while $(\tau<\omega) \wedge(\neg$ haveToStop $(\ldots))$
4. $\pi \leftarrow$ samplePath ()
5. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v)+1, \tau \leftarrow \tau+1$
6. end while
7. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) / \tau$
8. return $\tilde{\mathbf{b}}$

KADABRA: Overview

Input: graph $G=(V, E)$, error prob. δ, error approx. λ

1. ... 2. ... 3....
2. foreach $v \in V$ do $\tilde{\mathbf{b}}(v) \leftarrow 0$
3. while $(\tau<\omega) \wedge(\neg$ haveToStop $(\ldots))$
4. $\pi \leftarrow$ samplePath ()
5. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v)+1, \tau \leftarrow \tau+1$
6. end while
7. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) / \tau$
8. return $\tilde{\mathrm{b}}$

TOP- k centralities:

KADABRA: Overview

Input: graph $G=(V, E)$, error prob. δ, error approx. λ

1. ... 2.... 3....
2. foreach $v \in V$ do $\tilde{\mathbf{b}}(v) \leftarrow 0$
3. while $(\tau<\omega) \wedge(\neg$ haveToStop $(\ldots))$
4. $\pi \leftarrow$ samplePath ()
5. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v)+1, \tau \leftarrow \tau+1$
6. end while
7. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) / \tau$
8. return $\tilde{\mathrm{b}}$

TOP- k centralities:

KADABRA: Overview

Input: graph $G=(V, E)$, error prob. δ, error approx. λ

1. ... 2.... 3....
2. foreach $v \in V$ do $\tilde{\mathbf{b}}(v) \leftarrow 0$
3. while $(\tau<\omega) \wedge(\neg$ haveToStop $(\ldots))$
$2^{\text {nd }}$ contribution:
Adaptive Sampling
Made Rigorous
4. $\pi \leftarrow$ samplePath ()
5. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v)+1, \tau \leftarrow \tau+1$
6. end while
7. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) / \tau$
8. return $\tilde{\mathbf{b}}$
$1^{\text {st }}$ contribution:
BBBFS

TOP- k centralities:

Our Idea: Balanced Bidirectional BFS

Simple BFS

Our Idea: Balanced Bidirectional BFS

Simple BFS

Our Idea: Balanced Bidirectional BFS

Simple BFS

Our Idea: Balanced Bidirectional BFS

Simple BFS

Our Idea: Balanced Bidirectional BFS

Bidirectional BFS

Our Idea: Balanced Bidirectional BFS

Bidirectional BFS

Our Idea: Balanced Bidirectional BFS

Bidirectional BFS

Our Idea: Balanced Bidirectional BFS

Bidirectional BFS

Our Idea: Balanced Bidirectional BFS

Bidirectional BFS

$\{$ BFS intersection $\} \subseteq$ \{any st-paths $\}$ $\{$ any st-path $\} \cap\{$ BFS intersection $\} \neq \emptyset$

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Speed-up of BBBFS vs simple BFS?
"You may get a factor 2 ...
Not worth the complications!"

VS

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

The Birthday (pseudo)Paradox
m balls u.a.r. in n bins:
Probability p of ≥ 2
balls in one bin?

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

The Birthday (pseudo)Paradox
m balls u.a.r. in n bins:
Probability p of ≥ 2
balls in one bin?

$$
1-p \leq\left(1-\frac{m}{2 n}\right)^{\frac{m}{2}}
$$

BBBFS on Complex Networks

Complex Networks \approx "good" Random Graph Models

The Birthday (pseudo)Paradox
m balls u.a.r. in n bins:
Probability p of ≥ 2
balls in one bin?

$$
m=c \sqrt{n}
$$

BBBFS on Random Graphs

Theorem. Let G be a graph generated by one of the following models:

- the Configuration Model,
- the Norros-Reittu model,
- the Chung-Lu model, and the
- Generalized Random Graph model.

For each fixed $\epsilon>0$, and for each pair of nodes s and t, w.h.p. the time needed to compute an $s t$-shortest path through a BBBFS is $\mathcal{O}\left(n^{\frac{1}{2}+\epsilon}\right)$ if the degree distribution λ has finite second moment, $\mathcal{O}\left(n^{\frac{4-\beta}{2}+\epsilon}\right)$ if λ is a power law distribution with $2<\beta<3$.

Experimental Results

Experimental Results

Experimental Results

Wikipedia graph $(|V|=4229697,|E|=102165832)$

Rank	Page	Lower	\mathbf{b}	Upper
1$)$	USA	0.046278	0.047173	0.048084
$2)$	France	0.019522	0.020103	0.020701
$3)$	UK	0.017983	0.018540	0.019115
$4)$	England	0.016348	0.016879	0.017428
$5-6)$	Poland	0.012092	0.012287	0.012486
$5-6)$	Germany	0.011930	0.012124	0.012321
7	India	0.009683	0.010092	0.010518
$8-12)$	WWII	0.008870	0.009065	0.009265
$8-12)$	Russia	0.008660	0.008854	0.009053
$8-12)$	Italy	0.008650	0.008845	0.009045
$8-12)$	Canada	0.008624	0.008819	0.009018
$8-12)$	Australia	0.008620	0.008814	0.009013

Top- k betweenness centralities with $\delta=0.1$ and $\lambda=0.0002$.

Experimental Results

Rank	Actor	Lower	\mathbf{b}	Upper
1$)$	Jeremy, Ron	0.009360	0.010058	0.010808
$2)$	Kaufman, Lloyd	0.005936	0.006492	0.007100
$3)$	Hitler, Adolf	0.004368	0.004844	0.005373
$4-6)$	Kier, Udo	0.003250	0.003435	0.003631
$4-6)$	Roberts, Eric (I)	0.003178	0.003362	0.003557
$4-6)$	Madsen, M. (I)	0.003120	0.003305	0.003501
$7-9)$	Trejo, Danny	0.002652	0.002835	0.003030
$7-9)$	Lee, C. (I)	0.002551	0.002734	0.002931
$7-12)$	Estevez, Joe	0.002350	0.002534	0.002732
$9-17)$	Carradine, David	0.002116	0.002296	0.002492
$9-17)$	von Sydow, M. (I)	0.002023	0.002206	0.002405
$9-17)$	Keitel, Harvey (I)	0.001974	0.002154	0.002352
$10-17)$	Depardieu, Gèrard	0.001763	0.001943	0.002142

Top- k betweenness centralities with $\delta=0.1$ and $\lambda=0.0002$.

Experimental Results

since 1999
2nd from 1999 to 2009, first in 1989-94
IMDB $2014(|V|=1797446,|E|=145760312)$

Rank	Actor	Lower	\mathbf{b}	Upper
1$)$	Jeremy, Ron	0.009360	0.010058	0.010808
$2)$	Kaufman, Lloyd	0.005936	0.006492	0.007100
$3)$	Hitler, Adolf	0.004368	0.004844	0.005373
$4-6)$	Kier, Udo	0.003250	0.003435	0.003631
$4-6)$	Roberts, Eric (I)	0.003178	0.003362	0.003557
$4-6)$	Madsen, M. (I)	0.003120	0.003305	0.003501
$7-9)$	Trejo, Danny	0.002652	0.002835	0.003030
$7-9)$	Lee, C. (I)	0.002551	0.002734	0.002931
$7-12)$	Estevez, Joe	0.002350	0.002534	0.002732
$9-17)$	Carradine, David	0.002116	0.002296	0.002492
$9-17)$	von Sydow, M. (I)	0.002023	0.002206	0.002405
$9-17)$	Keitel, Harvey (I)	0.001974	0.002154	0.002352
$10-17)$	Depardieu, Gèrard	0.001763	0.001943	0.002142

Top- k betweenness centralities with $\delta=0.1$ and $\lambda=0.0002$.

Experimental Results

Conclusions

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Conclusions

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Open Problem: Improve the algorithm (combine ABRA and KADABRA) and...

Conclusions

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Open Problem: Improve the algorithm (combine ABRA and KADABRA) and...

Conclusions

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Open Problem: Improve the algorithm (combine ABRA and KADABRA) and...

Find an acronim for ALAKAZAM!

T HANK

You!

