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Betweenness via Random Approximation



Centrality Measures in (Complex) Networks

Examples of A) Betweenness centrality, B) Closeness centrality, C)
Eigenvector centrality, D) Degree centrality, E) Harmonic
Centrality and F) Katz centrality of the same graph∗. ∗Source: Wikipedia.
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Centrality Measures in (Complex) Networks

xBetweenness centrality:

σ(x) = 1
n(n− 1)

∑
s6=x 6=t

σst(x)
σst

s

tσst := # shortest paths from
s to t
σst(x) := # shortest paths
from s to t through x

xs t

[Brandes ’01]: betweenness of all nodes in O(mn)

[Borassi et al. ’15]: betweenness of a node requires
Ω(n2−ε) on sparse graphs (assuming SETH)

Prob. Pr(X) of being in a shortest path
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Random Approximation of Centrality

Eppstein, Wang [SODA ’01]: samples S ⊂ V and
compute measure w.r.t. S =⇒ approx. of closeness
centrality w.h.p. in O(CB) · O(SSSP )

Betweenness centrality:

......, Riondato and Upfal [KDD ’16]:
ABRA∗, ε-approx. in time
O(g(RA)) · O(st-SP )

∗ Approximating Betweenness via Rademacher Averages

Idea: samples s, t ∈ V and give 1 point to x if x is
in the st-shortest path

Rademacher Averages.
We could, but we keep it simple.



KADABRA: Overview

Input: graph G = (V,E), error prob. δ, error approx. λ
1. . . . 2. . . . 3. . . .
4. foreach v ∈ V do b̃(v)← 0
5. while (τ < ω) ∧ (¬haveToStop(. . . ))
6. π ← samplePath()
7. for each v ∈ π do b̃(v)← b̃(v) + 1, τ ← τ + 1
8. end while
9. for each v ∈ π do b̃(v)← b̃(v)/τ

10. return b̃
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2nd contribution:
Adaptive Sampling
Made Rigorous

1st contribution:
BBBFS
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s

t

Bidirectional BFS
{BFS intersection} ⊆ {any st-paths}
{any st-path} ∩ {BFS intersection} 6= ∅
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Our Idea: Balanced Bidirectional BFS

Speed-up of BBBFS vs simple BFS?
“You may get a factor 2...

Not worth the complications!”

s

t

vs

s

t
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BBBFS on Complex Networks

Complex Networks ≈ “good” Random Graph Models

The Birthday (pseudo)Paradox
?

m balls u.a.r. in n bins:
Probability p of ≥ 2
balls in one bin?

1− p ≤ (1− m
2n )m2

m = c
√
n

≈ e− c
2
4

s t?
≈
√
n



BBBFS on Random Graphs

Theorem. Let G be a graph generated by one of
the following models:
• the Configuration Model,
• the Norros-Reittu model,
• the Chung-Lu model, and the
• Generalized Random Graph model.
For each fixed ε > 0, and for each pair of nodes s
and t, w.h.p. the time needed to compute an
st-shortest path through a BBBFS is O(n 1

2 +ε) if
the degree distribution λ has finite second moment,
O(n 4−β

2 +ε) if λ is a power law distribution with
2 < β < 3.
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Experimental Results

Wikipedia graph (|V | = 4229697, |E| = 102165832)
Rank Page Lower b̃ Upper
1) USA 0.046278 0.047173 0.048084
2) France 0.019522 0.020103 0.020701
3) UK 0.017983 0.018540 0.019115
4) England 0.016348 0.016879 0.017428
5-6) Poland 0.012092 0.012287 0.012486
5-6) Germany 0.011930 0.012124 0.012321
7) India 0.009683 0.010092 0.010518
8-12) WWII 0.008870 0.009065 0.009265
8-12) Russia 0.008660 0.008854 0.009053
8-12) Italy 0.008650 0.008845 0.009045
8-12) Canada 0.008624 0.008819 0.009018
8-12) Australia 0.008620 0.008814 0.009013

Top-k betweenness centralities with δ = 0.1 and λ = 0.0002.



Experimental Results

Rank Actor Lower b̃ Upper
1) Jeremy, Ron 0.009360 0.010058 0.010808
2) Kaufman, Lloyd 0.005936 0.006492 0.007100
3) Hitler, Adolf 0.004368 0.004844 0.005373
4-6) Kier, Udo 0.003250 0.003435 0.003631
4-6) Roberts, Eric (I) 0.003178 0.003362 0.003557
4-6) Madsen, M. (I) 0.003120 0.003305 0.003501
7-9) Trejo, Danny 0.002652 0.002835 0.003030
7-9) Lee, C. (I) 0.002551 0.002734 0.002931
7-12) Estevez, Joe 0.002350 0.002534 0.002732
9-17) Carradine, David 0.002116 0.002296 0.002492
9-17) von Sydow, M. (I) 0.002023 0.002206 0.002405
9-17) Keitel, Harvey (I) 0.001974 0.002154 0.002352
10-17) Depardieu, Gèrard 0.001763 0.001943 0.002142
Top-k betweenness centralities with δ = 0.1 and λ = 0.0002.

IMDB 2014 (|V | = 1797446, |E| = 145760312)
actors common movie
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IMDB 2014 (|V | = 1797446, |E| = 145760312)
since 1999 2nd from 1999 to 2009, first in 1989-94
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XXX
industry

(3% of G)

≥ 2000
edges

Family guy,
Ghost busters,
· · · · · ·

Ron Jeremy
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Open Problem: Improve the algorithm (combine
ABRA and KADABRA) and...

Find an acronim
for ALAKAZAM!

Take-home message(s):

• (Beware of stochastic dependence).

• Bidirectional balanced BFS is worth trying.



Thank
You!
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