KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation

Emanuele Natale[†]
joint work with Michele Borassi*

24rd Annual European Symposium on Algorithms (ESA 2016) 22-26 August, 2016 Aarhus, Denmark

Examples of A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality, D) Degree centrality, E) Harmonic Centrality and F) Katz centrality of the same graph*.

*Source: Wikipedia.

Betweenness centrality:

$$\sigma(x) = \frac{1}{n(n-1)} \sum_{s \neq x \neq t} \frac{\sigma_{st}(x)}{\sigma_{st}}$$

 $\sigma_{st} := \#$ shortest paths from s to t

 $\sigma_{st}(x) := \#$ shortest paths from s to t through x

Prob. Pr(X) of being in a shortest path

Betweenness centrality:

$$\sigma(x) = \frac{1}{n(n-1)} \sum_{s \neq x \neq t} \frac{\sigma_{st}(x)}{\sigma_{st}}$$

 $\sigma_{st} := \#$ shortest paths from s to t

 $\sigma_{st}(x) := \#$ shortest paths from s to t through x

Prob. Pr(X) of being in a shortest path

Betweenness centrality:

$$\sigma(x) = \frac{1}{n(n-1)} \sum_{s \neq x \neq t} \frac{\sigma_{st}(x)}{\sigma_{st}}$$

 $\sigma_{st} := \#$ shortest paths from s to t

 $\sigma_{st}(x) := \#$ shortest paths from s to t through x

[Brandes '01]: betweenness of all nodes in $\mathcal{O}(mn)$

[Borassi et al. '15]: betweenness of a node requires $\Omega(n^{2-\epsilon})$ on sparse graphs (assuming SETH)

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow \text{approx. of } closeness$ centrality w.h.p. in $\mathcal{O}(CB) \cdot \mathcal{O}(SSSP)$

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow \text{approx. of } closeness$ centrality w.h.p. in $\mathcal{O}(CB) \cdot \mathcal{O}(SSSP)$

Betweenness centrality:

Idea: samples $s, t \in V$ and give 1 point to x if x is in the st-shortest path

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow \text{approx. of } closeness$ centrality w.h.p. in $\mathcal{O}(CB) \cdot \mathcal{O}(SSSP)$

Betweenness centrality:

Idea: samples $s, t \in V$ and give 1 point to x if x is in the st-shortest path

....., Riondato and Upfal [KDD '16]: ABRA*, ϵ -approx. in time $\mathcal{O}(g(RA)) \cdot \mathcal{O}(st\text{-}SP)$

^{*} Approximating Betweenness via Rademacher Averages

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow \text{approx. of } closeness$ centrality w.h.p. in $\mathcal{O}(CB) \cdot \mathcal{O}(SSSP)$

Betweenness centrality:

Idea: samples $s, t \in V$ and give 1 point to x if x is in the st-shortest path

....., Riondato and Upfal [KDD '16]:

 $ABRA^*$, ϵ -approx. in time

$$\mathcal{O}(g(RA)) \cdot \mathcal{O}(st\text{-}SP)$$

#samples shortest paths

shortest paths

#samples

^{*} Approximating Betweenness via Rademacher Averages

Eppstein, Wang [SODA '01]: samples $S \subset V$ and compute measure w.r.t. $S \Longrightarrow \text{approx. of } closeness$ centrality w.h.p. in $\mathcal{O}(CB) \cdot \mathcal{O}(SSSP)$

Betweenness centrality:

Idea: samples $s, t \in V$ and give 1 point to x if x is in the st-shortest path

....., Riondato and Upfal [KDD '16]:

 $ABRA^*$, ϵ -approx. in time

$$\mathcal{O}(g(\mathbf{RA})) \cdot \mathcal{O}(st\text{-}SP)$$

Rademacher Averages.

We could, but we keep it simple.

^{*} Approximating Betweenness via Rademacher Averages

```
Input: graph G = (V, E), error prob. \delta, error approx. \lambda
1. ... 2. ... 3. ...
4. foreach v \in V do \tilde{\mathbf{b}}(v) \leftarrow 0
5. while (\tau < \omega) \wedge (\neg \mathbf{haveToStop}(...))
6. \pi \leftarrow \mathbf{samplePath}()
7. for each v \in \pi do \tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) + 1, \tau \leftarrow \tau + 1
8. end while
9. for each v \in \pi do \tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) / \tau
```

10. return b

Input: graph G = (V, E), error prob. δ , error approx. λ

- $1. \ldots 2 \ldots 3 \ldots$
- 4. foreach $v \in V$ do $\tilde{\mathbf{b}}(v) \leftarrow 0$
- 5. while $(\tau < \omega) \wedge (\neg \mathbf{haveToStop}(\dots))$
- 6. $\pi \leftarrow \text{samplePath}()$
- 7. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) + 1$, $\tau \leftarrow \tau + 1$
- 8. end while
- 9. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v)/\tau$
- 10. return b

TOP-k centralities:

$$0 \qquad v_3 \approx v_4 \qquad v_2 \qquad v_1 \qquad 1$$

Input: graph G = (V, E), error prob. δ , error approx. λ

- $1. \ldots 2 \ldots 3 \ldots$
- 4. foreach $v \in V$ do $\tilde{\mathbf{b}}(v) \leftarrow 0$
- 5. while $(\tau < \omega) \wedge (\neg \mathbf{haveToStop}(\dots))$
- 6. $\pi \leftarrow \text{samplePath}()$
- 7. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) + 1$, $\tau \leftarrow \tau + 1$
- 8. end while
- 9. for each $v \in \pi$ do $\tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v)/\tau$
- 10. return **b**

TOP-k centralities:

Input: graph G = (V, E), error prob. δ , error approx. λ

```
1. ... 2. ... 3. ...

4. foreach v \in V do \tilde{\mathbf{b}}(v) \leftarrow 0

5. while (\tau < \omega) \land (\neg \mathbf{haveToStop}(...))

6. \pi \leftarrow \mathbf{samplePath}() \blacktriangleleft

7. for each v \in \pi do \tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) + 1, \tau \leftarrow \tau + 1

8. end while

9. for each v \in \pi do \tilde{\mathbf{b}}(v) \leftarrow \tilde{\mathbf{b}}(v) / \tau

10. return \tilde{\mathbf{b}}
```

TOP-k centralities:

Simple BFS

Simple BFS

Simple BFS

Simple BFS

Simple BFS

Simple BFS

Simple BFS

Bidirectional BFS

Bidirectional BFS

Bidirectional BFS

Bidirectional BFS

Bidirectional BFS

Bidirectional BFS

Bidirectional BFS

Bidirectional BFS

```
\{BFS \text{ intersection}\} \subseteq \{any \text{ } st\text{-paths}\} \{any \text{ } st\text{-path}\} \cap \{BFS \text{ intersection}\} \neq \emptyset
```


Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Balanced Bidirectional BFS (BBBFS)

Our Idea: Balanced Bidirectional BFS

Speed-up of BBBFS vs simple BFS?

"You may get a factor 2...
Not worth the complications!"

Complex Networks ≈ "good" Random Graph Models

The Birthday (pseudo)Paradox

m balls u.a.r. in n bins:

Probability p of ≥ 2

balls in one bin?

Complex Networks ≈ "good" Random Graph Models

The Birthday (pseudo)Paradox

m balls u.a.r. in n bins:

Probability p of ≥ 2

balls in one bin?

$$1 - p \le \left(1 - \frac{m}{2n}\right)^{\frac{m}{2}}$$

Complex Networks ≈ "good" Random Graph Models

The Birthday (pseudo)Paradox

m balls u.a.r. in n bins:

Probability p of ≥ 2

balls in one bin?

$$1 - p \le \left(1 - \frac{m}{2n}\right)^{\frac{m}{2}} \approx e^{-\frac{c^2}{4}}$$

$$m = c\sqrt{n}$$

BBBFS on Random Graphs

Theorem. Let G be a graph generated by one of the following models:

- the Configuration Model,
- the Norros-Reittu model,
- the Chung-Lu model, and the
- Generalized Random Graph model.

For each fixed $\epsilon > 0$, and for each pair of nodes s and t, w.h.p. the time needed to compute an st-shortest path through a BBBFS is $\mathcal{O}(n^{\frac{1}{2}+\epsilon})$ if the degree distribution λ has finite second moment, $\mathcal{O}(n^{\frac{4-\beta}{2}+\epsilon})$ if λ is a power law distribution with $2 < \beta < 3$.

Wikipedia graph (|V| = 4229697, |E| = 102165832)

Rank	Page	Lower	Ď	Upper
1)	USA	0.046278	0.047173	0.048084
2)	France	0.019522	0.020103	0.020701
3)	UK	0.017983	0.018540	0.019115
4)	England	0.016348	0.016879	0.017428
5-6)	Poland	0.012092	0.012287	0.012486
5-6)	Germany	0.011930	0.012124	0.012321
7)	India	0.009683	0.010092	0.010518
8-12)	WWII	0.008870	0.009065	0.009265
8-12)	Russia	0.008660	0.008854	0.009053
8-12)	Italy	0.008650	0.008845	0.009045
8-12)	Canada	0.008624	0.008819	0.009018
8-12)	Australia	0.008620	0.008814	0.009013

Top-k betweenness centralities with $\delta = 0.1$ and $\lambda = 0.0002$.

actors common movie IMDB 2014 (|V| = 1797446, |E| = 145760312)

Rank	Actor	Lower	Ď	Upper
1)	Jeremy, Ron	0.009360	0.010058	0.010808
2)	Kaufman, Lloyd	0.005936	0.006492	0.007100
3)	Hitler, Adolf	0.004368	0.004844	0.005373
4-6)	Kier, Udo	0.003250	0.003435	0.003631
4-6)	Roberts, Eric (I)	0.003178	0.003362	0.003557
4-6)	Madsen, M. (I)	0.003120	0.003305	0.003501
7-9)	Trejo, Danny	0.002652	0.002835	0.003030
7-9)	Lee, C. (I)	0.002551	0.002734	0.002931
7-12)	Estevez, Joe	0.002350	0.002534	0.002732
9-17)	Carradine, David	0.002116	0.002296	0.002492
9-17)	von Sydow, M. (I)	0.002023	0.002206	0.002405
9-17)	Keitel, Harvey (I)	0.001974	0.002154	0.002352
10-17)	Depardieu, Gèrard	0.001763	0.001943	0.002142

Top-k betweenness centralities with $\delta = 0.1$ and $\lambda = 0.0002$.

since 1999 2nd from 1999 to 2009, first in 1989-94 / IMDB 2014 (|V| = 1797446, |E| = 145760312)

Rank	Actor	Lower	$\tilde{\mathbf{b}}$	Upper
1)	Jeremy, Ron	0.009360	0.010058	0.010808
2)	Kaufman, Lloyd	0.005936	0.006492	0.007100
3)	Hitler, Adolf ←	0.004368	0.004844	0.005373
4-6)	Kier, Udo	0.003250	0.003435	0.003631
4-6)	Roberts, Eric (I)	0.003178	0.003362	0.003557
4-6)	Madsen, M. (I)	0.003120	0.003305	0.003501
7-9)	Trejo, Danny	0.002652	0.002835	0.003030
7-9)	Lee, C. (I)	0.002551	0.002734	0.002931
7-12)	Estevez, Joe	0.002350	0.002534	0.002732
9-17)	Carradine, David	0.002116	0.002296	0.002492
9-17)	von Sydow, M. (I)	0.002023	0.002206	0.002405
9-17)	Keitel, Harvey (I)	0.001974	0.002154	0.002352
10-17)	Depardieu, Gèrard	0.001763	0.001943	0.002142

Top-k betweenness centralities with $\delta = 0.1$ and $\lambda = 0.0002$.

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Open Problem: Improve the algorithm (combine ABRA and KADABRA) and...

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Open Problem: Improve the algorithm (combine ABRA and KADABRA) and...

Take-home message(s):

- Bidirectional balanced BFS is worth trying.
- (Beware of stochastic dependence).

Open Problem: Improve the algorithm (combine ABRA and KADABRA) and...

Find an acronim for ALAKAZAM!

THANK YOU!

