Plurality Consensus in the Gossip Model

Emanuele Natale

joint work with
L. Becchetti ${ }^{\dagger}$, A. Clementi*, F. Pasquale ${ }^{\dagger}$ and R. Silvestri ${ }^{\dagger}$
${ }^{\dagger}$ Sapienza Università di Roma, * Università di Rome Tor Vergata
ACM-SIAM Symposium on Discrete Algorithms San Diego, 4-6 January 2015

The Plurality Consensus Problem

- We have a set of nodes each having one color out of $\{1, \ldots, k\}$.

The Plurality Consensus Problem

- We have a set of nodes each having one color out of $\{1, \ldots, k\}$.
- There is a plurality of nodes having the same color.

The Plurality Consensus Problem

- We have a set of nodes each having one color out of $\{1, \ldots, k\}$.
- There is a plurality of nodes having the same color.
- We want to reach consensus on the plurality color.

Our Setting

- Initial bias: the plurality is at least $(1+\epsilon)$ times any other color.

Our Setting

- Initial bias: the plurality is at least $(1+\epsilon)$ times any other color.
- Topology: complete graph (and regular expanders).

Our Setting

- Initial bias: the plurality is at least $(1+\epsilon)$ times any other color.
- Topology: complete graph (and regular expanders).
- Communication model: $\mathcal{G O S S I P}$ model [Censor-Hillel et al., STOC '12]. Each node in one round can exchange messages with only one neighbor.

Our Setting

- Initial bias: the plurality is at least $(1+\epsilon)$ times any other color.
- Topology: complete graph (and regular expanders).
- Communication model: $\mathcal{G O S S I P}$ model [Censor-Hillel et al., STOC '12]. Each node in one round can exchange messages with only one neighbor.
- Local memory and message size: $O(\log n)$.

Relationships to Other Communication Models

$\mathcal{G O S S I P}$ model with neighbors chosen randomly: Telephone Call, Push\&Pull, Uniform Gossip...

Relationships to Other Communication Models

$\mathcal{G O S S I P}$ model with neighbors chosen randomly: Telephone Call, Push\&Pull, Uniform Gossip...
$\mathcal{L O C} \mathcal{A} \mathcal{L}$ model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.

Relationships to Other Communication Models

$\mathcal{G O S S I P}$ model with neighbors chosen randomly: Telephone Call, Push\&Pull, Uniform Gossip...
$\mathcal{L O C} \mathcal{A} \mathcal{L}$ model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.
... on the complete graph, plurality consensus can be achieved in one round.

Relationships to Other Communication Models

$\mathcal{G O S S I P}$ model with neighbors chosen randomly: Telephone Call, Push\&Pull, Uniform Gossip...
$\mathcal{L O C A L}$ model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.
... on the complete graph, plurality consensus can be achieved in one round.

Censor-Hillel et al. (STOC '12): Every task that can be solved in the $\mathcal{L O C A L}$ model in T rounds, can be solved in $O(T+$ polylogn $)$ rounds in the $\mathcal{G O S S I P}$ model.
But...

Relationships to Other Communication Models

$\mathcal{G O S S I P}$ model with neighbors chosen randomly: Telephone Call, Push\&Pull, Uniform Gossip...
$\mathcal{L O C A L}$ model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.
... on the complete graph, plurality consensus can be achieved in one round.

Censor-Hillel et al. (STOC '12): Every task that can be solved in the $\mathcal{L O C A L}$ model in T rounds, can be solved in $O(T+$ polylogn $)$ rounds in the $\mathcal{G O S S I P}$ model.
But. . . using the preceding theorem, message size grows dramatically!

(Main) Related Works

	 mess. size	\# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(k \log n)$	any	$O(\log n)$	$\mathcal{G O S S I P}$
Angluin et al. DISC '07 Perron et al. INFOCOM'09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr et al. SPAA '11	$\Theta(1)$	2	$O(\log n)$	$\mathcal{G O S S I P}$
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	$\mathcal{G O S S I P}$

(Main) Related Works

	 mess. size	\# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(\log n)$	any	$O(\operatorname{tog} n)$	$\mathcal{G O S S I P}$
Angluin et al. DISC '07 Perron et al. INFOCOM'09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr et al. SPAA '11	$\Theta(1)$	2	$O(\log n)$	$\mathcal{G O S S I P}$
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	$\mathcal{G O S S I P}$

(Main) Related Works

	Mem. \& mess. size	\# of colors	Time efficiency	Comm. Model
Kempe et al FOCS '03	$O(\log n)$	any	$O(\operatorname{tog} n)$	$\mathcal{G O S S I P}$
Angluin et al. DISC '07 Perron et al. INFOCOM'09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr et al. SPAA '11	$\Theta(1)$	2	$O(\log n)$	$\mathcal{G O S S I P}$
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
$\begin{array}{\|l} \hline \text { Us+Trevisan } \\ \text { SPAA '14 } \end{array}$	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	$\mathcal{G O S S I P}$

(Main) Related Works

	Mem. \& mess. size	\# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	O (1) n)	any	O (togn)	$\mathcal{G O S S I P}$
$\begin{aligned} & \text { Angluin et al. } \\ & \text { DISC '07 } \\ & \text { Perron et al. } \\ & \text { INFOCOM'09 } \end{aligned}$	$\Theta(1)$	2	$O(10 \% n)$	Seqrintial
$\begin{array}{\|l\|} \hline \text { Doerr et al. } \\ \text { SPAA '11 } \end{array}$	$\Theta(1)$	8	$O($ topen n	$\mathcal{G O S S I P}$
$\begin{aligned} & \text { Babaee et al. } \\ & \text { Comp. J. } 12 \\ & \text { Junge etal. } \\ & \text { ISIT '122 } \end{aligned}$	$O(\log k)$	Constant	$O(\log n)$	Sequential
$\begin{aligned} & \text { Us+Trevisan } \\ & \text { SPAA '14 } \end{aligned}$	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	$\mathcal{G O S S I P}$

(Main) Related Works

	Mem. \& mess. size	\# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	O (1) n)	any	O (togn)	$\mathcal{G O S S I P}$
$\begin{aligned} & \text { Angluin et al. } \\ & \text { DISC '07 } \\ & \text { Perron et al. } \\ & \text { INFOCOM'09 } \end{aligned}$	$\Theta(1)$	2	$O(10 \% n)$	Seqrintial
$\begin{array}{\|l\|} \hline \text { Doerr et al. } \\ \text { SPAA '11 } \end{array}$	$\Theta(1)$	8	$O($ topen n	$\mathcal{G O S S I P}$
$\begin{aligned} & \text { Babaee et al. } \\ & \text { Comp. J. } 12 \\ & \text { Junge etal. } \\ & \text { ISIT '122 } \end{aligned}$	$O(\log k)$	Conrant	$O(\operatorname{Tog} n)$	Seqrential
$\begin{aligned} & \text { Us+Trevisan } \\ & \text { SPAA '14 } \end{aligned}$	$O(\log k)$	$n^{\ominus(1)}$	$O(k \cdot \log n)$	$\mathcal{G O S S I P}$

(Main) Related Works

	Mem. \& mess. size	$\begin{aligned} & \text { \# of } \\ & \text { colors } \end{aligned}$	$\begin{aligned} & \text { Time } \\ & \text { efficiency } \end{aligned}$	Comm Model
Kempe ${ }_{\text {et al }}$. FOCS '03	$O($)	any	O (togn)	$\mathcal{G O S S I P}$
$\begin{aligned} & \text { Angluin et al. } \\ & \text { DISC' } 07 \\ & \text { Perron et al. } \\ & \text { INFOCOM' } \end{aligned}$	$\Theta(1)$	2	$O(\operatorname{tog} n)$	Seqrintial
$\begin{aligned} & \text { Doerr et al. } \\ & \text { SPAA '11 } \end{aligned}$	$\Theta(1)$	8	O (topn)	$\mathcal{G O S S I P}$
$\begin{aligned} & \text { Babaee et al. } \\ & \text { Comp. J.'12 } \\ & \text { Jung et al. } \\ & \text { ISST '12 } \end{aligned}$	$O(\operatorname{Tog} k)$	Collant	$O(\log n)$	Sequintial
$\begin{aligned} & \text { Us+Trevisan } \\ & \text { SPAA '14 } \end{aligned}$	O (tag \%	$\pi \sqrt{\theta(1)}$	$O($ 人回 n)	$\mathcal{G O S S I P}$

Our Contribution: Characterizing the Initial Bias

$$
\begin{aligned}
& c_{i}^{(t)}:=\mid\{i \text {-colored nodes }\} \mid, \text { color } 1 \text { is the plurality }, \\
& q^{(t)}:=\mid\{\text { undecided nodes }\} \mid, \quad \mathbf{c}^{(t)}:=\left(c_{1}^{(t)}, \ldots, c_{k}^{(t)}, q^{(t)}\right)
\end{aligned}
$$

Our Contribution: Characterizing the Initial Bias

$$
\begin{aligned}
& c_{i}^{(t)}:=\mid\{i \text {-colored nodes }\} \mid, \quad \text { color } 1 \text { is the plurality, } \\
& q^{(t)}: \left.=\left\lvert\,\left\{\begin{array}{l}
\text { undecided } \\
\text { wait slides! }
\end{array} \text { nodes }\right\}\right. \right\rvert\,, \quad \mathbf{c}^{(t)}:=\left(c_{1}^{(t)}, \ldots, c_{k}^{(t)}, q^{(t)}\right)
\end{aligned}
$$

The Monochromatic Distance

$$
\operatorname{md}\left(\mathbf{c}^{(\mathbf{0})}\right):=\sum_{i=1}^{k}\left(\frac{c_{c}^{(0)}}{c_{1}^{(0)}}\right)^{2}=1+\mathcal{D}\left(\prod \xrightarrow[\square]{\longrightarrow}, \downarrow\right)
$$

The Monochromatic Distance

$$
\operatorname{md}\left(\mathbf{c}^{(\mathbf{0})}\right):=\sum_{i=1}^{k}\left(\frac{c_{i}^{(0)}}{c_{1}^{(0)}}\right)^{2}=1+\mathcal{D}\binom{\longrightarrow}{\square \square \square}
$$

Our Results

First analysis for $k=\omega(1)$ of the Undecided-State Dynamics [Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If $k=O\left((n / \log n)^{1 / 3}\right)$ and $c_{1} \geq(1+\epsilon) \cdot c_{2}$ with $\epsilon>0$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O\left(\operatorname{md}\left(\mathbf{c}^{(0)}\right) \cdot \log n\right)$ rounds.

Our Results

First analysis for $k=\omega(1)$ of the Undecided-State Dynamics [Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If $k=O\left((n / \log n)^{1 / 3}\right)$ and $c_{1} \geq(1+\epsilon) \cdot c_{2}$ with $\epsilon>0$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O\left(\operatorname{md}\left(\mathbf{c}^{(0)}\right) \cdot \log n\right)$ rounds.

Lower Bound

If $k=O\left((n / \log n)^{1 / 6}\right)$ then w.h.p. the Undecided-State
Dynamics converges after at least $\Omega\left(\operatorname{md}\left(\mathbf{c}^{(0)}\right)\right)$ rounds.

The Undecided-State Dynamics

Some nodes can be "undecided".

The Undecided-State Dynamics

At the beginning of each round, each node observes a neighbor picked uniformly at random.

The Undecided-State Dynamics

If the observed node shares the same color...

The Undecided-State Dynamics

... nothing happens;

The Undecided-State Dynamics

if the node observes an undecided one...

The Undecided-State Dynamics

... nothing happens too;

The Undecided-State Dynamics

but, if the observed node has a different color...

The Undecided-State Dynamics

... then the node becomes undecided.

The Undecided-State Dynamics

Once undecided. . .

The Undecided-State Dynamics

... the node copies the first color it sees.

Overview of the Process

$$
\begin{aligned}
& \mathbf{E}\left[c_{i}^{(t+1)} \mid \mathbf{c}^{(t)}\right]= \\
= & c_{i}^{(t)} \cdot \underbrace{\frac{c_{i}^{(t)}+2 q^{(t)}}{n}}_{\text {Growth factor }}
\end{aligned}
$$

Remarks W.h.p.:

- Plurality does not change.
- Growth factor of plurality is >1.

Simulation of the growth factor:

Expected Behaviour of the Process

$$
\left\{\begin{array}{l}
\mathbf{E}\left[q^{(t+1)} \mid \mathbf{c}^{(t)}\right]=\frac{1}{n}\left[\left(q^{(t)}\right)^{2}+\left(n-q^{(t)}\right)^{2}-\sum_{i}\left(c_{i}^{(t)}\right)^{2}\right] \\
\mathbf{E}\left[c_{1}^{(t+1)} \mid \mathbf{c}^{(t)}\right]=c_{1}^{(t)} \cdot \frac{c_{1}^{(t)}+2 q^{(t)}}{n} \\
\vdots \\
\mathbf{E}\left[c_{k}^{(t+1)} \mid \mathbf{c}^{(t)}\right]=c_{k}^{(t)} \cdot \frac{c_{k}^{(t)}+2 q^{(t)}}{n}
\end{array}\right.
$$

Expected Behaviour of the Process

$$
\left\{\begin{array}{l}
\mathbf{E}\left[q^{(t+1)} \mid \mathbf{c}^{(t)}\right]=\frac{1}{n}\left[\left(q^{(t)}\right)^{2}+\left(n-q^{(t)}\right)^{2}-\sum_{i}\left(c_{i}^{(t)}\right)^{2}\right] \\
\mathbf{E}\left[c_{1}^{(t+1)} \mid \mathbf{c}^{(t)}\right]=c_{1}^{(t)} \cdot \frac{c_{1}^{(t)}+2 q^{(t)}}{n} \\
\vdots \\
\mathbf{E}\left[c_{k}^{(t+1)} \mid \mathbf{c}^{(t)}\right]=c_{k}^{(t)} \cdot \frac{c_{k}^{(t)}+2 q^{(t)}}{n}
\end{array}\right.
$$

Our Key Idea

Tip: Look for $m d\left(\mathbf{c}^{(t)}\right)$ and $R\left(\mathbf{c}^{(t)}\right):=\sum_{i=1}^{k} \frac{c_{i}^{(t)}}{c_{1}^{(t)}}$.

Our Key Idea

Tip: Look for $m d\left(\mathbf{c}^{(t)}\right)$ and $R\left(\mathbf{c}^{(t)}\right):=\sum_{i=1}^{k} \frac{c_{i}^{(t)}}{c_{1}^{(t)}}$.

Lemma

$$
\begin{aligned}
& \mathbf{E}\left[\left.\frac{c_{1}^{(t+1)}+2 q^{(t+1)}}{n} \right\rvert\, \mathbf{c}^{(t)}\right]= \\
& =1+\frac{\left(n-2 q^{(t)}-c_{1}^{(t)}\right)^{2}}{n^{2}}+\frac{2\left(R\left(\mathbf{c}^{(t)}\right)-\operatorname{md}\left(\mathbf{c}^{(t)}\right)\right) \cdot\left(c_{1}\right)^{2}}{n^{2}}
\end{aligned}
$$

First Round

Round 1: Each node observes another random one.

First Round

Round 1: Each node observes another random one.

The larger the number of colors and the more uniform the initial distribution, the higher the expected number of undecided nodes.

First Round

The size of each color is reduced to $\frac{\left(c_{i}^{(0)}\right)^{2}}{n}$.

First Round

The size of each color is reduced to $\frac{\left(c_{i}^{(0)}\right)^{2}}{n}$.

Colors with $c_{i}^{(0)}=O(\sqrt{n})$ nodes are likely to disappear.

Phase 1

If the initial distribution is quite uniform there are $\Omega(n)$ undecided nodes.

Undecided nodes take the first color they pull, causing colors to spread very fast.

Phase 1

Lemma

Within $T=O\left(\log \frac{R(\mathbf{c})^{2}}{\mathrm{md}(\mathbf{c})}\right)$ rounds the system reaches a configuration such that w.h.p.

$$
\begin{aligned}
c_{1}^{(T)} & =\Theta\left(\frac{n}{\operatorname{md}(\mathbf{c})}\right) \\
q^{(T)} & =\frac{n}{2}\left(1 \pm \Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)
\end{aligned}
$$

and, for every $i, c_{1}^{(0)} / c_{i}^{(0)}$ is approximately preserved.

Phase 2

\# new colored \approx
\# new undecided.

Phase 2

\# new colored \approx
\# new undecided.

Phase 2

\# new colored \approx
\# new undecided.

Phase 2

\# new colored \approx
\# new undecided.

Phase 2

The plurality has a small advantage $\Longrightarrow \quad$ after long time the equilibrium breaks down.

Phase 2

The plurality has a small advantage
$\Longrightarrow \quad$ after long time the equilibrium breaks down.

Phase 2

The plurality has a small advantage
$\Longrightarrow \quad$ after long time the equilibrium breaks down.

Phase 2

$$
\text { Plateau around } \begin{cases}c_{1}^{(T)} & =\Theta\left(\frac{n}{\operatorname{md}(\mathbf{c})}\right) \\ q^{(T)} & =\frac{n}{2}\left(1 \pm \Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)\end{cases}
$$

Average Growth:

$$
\begin{aligned}
& \mathbf{E}\left[c_{1}^{(t+1)} \mid \mathbf{c}^{(t)}\right] \approx c_{1}^{(t)}\left(1+\Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right) \\
& \mathbf{E}\left[q^{(t+1)} \mid \mathbf{c}^{(t)}\right] \approx \frac{n}{2}\left(1-\Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)
\end{aligned}
$$

Phase 2

$$
\text { Plateau around } \begin{cases}c_{1}^{(T)} & =\Theta\left(\frac{n}{\operatorname{md}(\mathbf{c})}\right) \\ q^{(T)} & =\frac{n}{2}\left(1 \pm \Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)\end{cases}
$$

Average Growth:

$$
\begin{aligned}
& \mathbf{E}\left[c_{1}^{(t+1)} \mid \mathbf{c}^{(t)}\right] \approx c_{1}^{(t)}\left(1+\Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right) \\
& \mathbf{E}\left[q^{(t+1)} \mid \mathbf{c}^{(t)}\right] \approx \frac{n}{2}\left(1-\Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)
\end{aligned}
$$

\Longrightarrow Lower bound of $\Omega(\operatorname{md}(\mathbf{c}))$.

Phase 2

$$
\text { Plateau around }\left\{\begin{aligned}
c_{1}^{(T)} & =\Theta\left(\frac{n}{\operatorname{md}(\mathbf{c})}\right) \\
q^{(T)} & =\frac{n}{2}\left(1 \pm \Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)
\end{aligned}\right.
$$

Average Growth:

$$
\begin{aligned}
& \mathbf{E}\left[c_{1}^{(t+\operatorname{md}(c))} \mid \mathbf{c}^{(t)}\right] \approx c_{1}^{(t)}\left(1+\Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)^{\operatorname{md}(\mathbf{c})} \\
& \mathbf{E}\left[q^{(t+\operatorname{md}(c))} \mid \mathbf{c}^{(t)}\right] \approx \frac{n}{2}\left(1-\Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)^{\operatorname{md}(\mathbf{c})}
\end{aligned}
$$

\Longrightarrow After $O(\operatorname{md}(\mathbf{c}) \log n)$ rounds, $R\left(\mathbf{c}^{(t)}\right)=1+o(1)$.

Phase 3

$$
R\left(\mathbf{c}^{(t)}\right)=1+o(1) \Longrightarrow c_{1}^{(t)}=\frac{n-q^{(t)}}{R\left(\mathbf{c}^{(t)}\right)}
$$

Phase 3

$$
R\left(\mathbf{c}^{(t)}\right)=1+o(1) \Longrightarrow c_{1}^{(t)}=\frac{n-q^{(t)}}{R\left(\mathbf{c}^{(t)}\right)} \approx n-q^{(t)}
$$

Phase 3

$$
\begin{aligned}
& R\left(\mathbf{c}^{(t)}\right)=1+o(1) \Longrightarrow c_{1}^{(t)}=\frac{n-q^{(t)}}{R\left(\mathbf{c}^{(t)}\right)} \approx n-q^{(t)} \\
& \Longrightarrow \mathbf{E}\left[\left.\frac{c_{c^{(t+1)}}+2 q^{(t+1)}}{n} \right\rvert\, \mathbf{c}^{(t)}\right] \geq 1+\left(\frac{q^{(t)}}{n}\right)^{2}
\end{aligned}
$$

Phase 3

$$
\begin{aligned}
& R\left(\mathbf{c}^{(t)}\right)=1+o(1) \Longrightarrow c_{1}^{(t)}=\frac{n-q^{(t)}}{R\left(\mathbf{c}^{(t)}\right)} \approx n-q^{(t)} \\
& \Longrightarrow \mathbf{E}\left[\left.\frac{c_{1}^{(t+1)}+2 q^{(t+1)}}{n} \right\rvert\, \mathbf{c}^{(t)}\right] \geq 1+\left(\frac{q^{(t)}}{n}\right)^{2}
\end{aligned}
$$

\Longrightarrow Plurality Consensus is reached within $O(\log n)$ rounds.

Extension to d-Regular Expanders

Given a d-regular expander graph, $k=O\left((n / \log n)^{1 / 3}\right)$ and $c_{1} \geq(1+\epsilon) \cdot c_{2}$ with $\epsilon>0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(\operatorname{md}(\mathbf{c})$ polylog $(n))$ rounds.

Extension to d-Regular Expanders

Given a d-regular expander graph, $k=O\left((n / \log n)^{1 / 3}\right)$ and $c_{1} \geq(1+\epsilon) \cdot c_{2}$ with $\epsilon>0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(\operatorname{md}(\mathbf{c})$ polylog $(n))$ rounds.

Idea. Simulate Undecided-State Dynamics on complete graph by sampling via n parallel random walks.

Extension to d-Regular Expanders

Given a d-regular expander graph, $k=O\left((n / \log n)^{1 / 3}\right)$ and $c_{1} \geq(1+\epsilon) \cdot c_{2}$ with $\epsilon>0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(\operatorname{md}(\mathbf{c})$ polylog $(n))$ rounds.

Idea. Simulate Undecided-State Dynamics on complete graph by sampling via n parallel random walks.

- Rapidly mixing property: each random walk is w.h.p. uniformly distributed after $\bar{t}=O$ (polylogn) steps.

Extension to d-Regular Expanders

Given a d-regular expander graph, $k=O\left((n / \log n)^{1 / 3}\right)$ and $c_{1} \geq(1+\epsilon) \cdot c_{2}$ with $\epsilon>0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(\operatorname{md}(\mathbf{c})$ polylog $(n))$ rounds.

Idea. Simulate Undecided-State Dynamics on complete graph by sampling via n parallel random walks.

- Rapidly mixing property: each random walk is w.h.p. uniformly distributed after $\bar{t}=O$ (polylogn) steps.
- The $\mathcal{G O S S I P}$ model with $O($ polylogn) limit on message size: congestion when random walks meet.

Summary

- md(c): global measure of bias, key of the Undecided-State Dynamic.

Summary

- $m d(\mathbf{c})$: global measure of bias, key of the Undecided-State Dynamic.
\Longrightarrow Plurality consensus problem with many colors.

Summary

- md(c): global measure of bias, key of the Undecided-State Dynamic.
\Longrightarrow Plurality consensus problem with many colors.
- Extension to regular expanders: random walks in the $\mathcal{G O S S I P}$ model.

Summary

- md(c): global measure of bias, key of the Undecided-State Dynamic.
\Longrightarrow Plurality consensus problem with many colors.
- Extension to regular expanders: random walks in the $\mathcal{G O S S I P}$ model.

Open Problems

- $\operatorname{md}(\mathbf{c}) \stackrel{?}{=}$ general time lower bound on the plurality consensus problem for any dynamics which uses only $\log k+\Theta(1)$ bits of local memory?

Summary

- $m d(\mathbf{c})$: global measure of bias, key of the Undecided-State Dynamic.
\Longrightarrow Plurality consensus problem with many colors.
- Extension to regular expanders: random walks in the $\mathcal{G O S S I P}$ model.

Open Problems

- $\operatorname{md}(\mathbf{c}) \stackrel{?}{=}$ general time lower bound on the plurality consensus problem for any dynamics which uses only $\log k+\Theta(1)$ bits of local memory?
- Undecided-State Dynamics + sampling via random walks $=$ efficient protocol for regular expander graphs.

Summary

- $m d(\mathbf{c})$: global measure of bias, key of the Undecided-State Dynamic.
\Longrightarrow Plurality consensus problem with many colors.
- Extension to regular expanders: random walks in the $\mathcal{G O S S I P}$ model.

Open Problems

- $\operatorname{md}(\mathbf{c}) \stackrel{?}{=}$ general time lower bound on the plurality consensus problem for any dynamics which uses only $\log k+\Theta(1)$ bits of local memory?
- Undecided-State Dynamics + sampling via random walks $=$ efficient protocol for regular expander graphs. Similar protocols for other classes of graphs. . . ?

