Gossip Algorithms for Majority Consensus

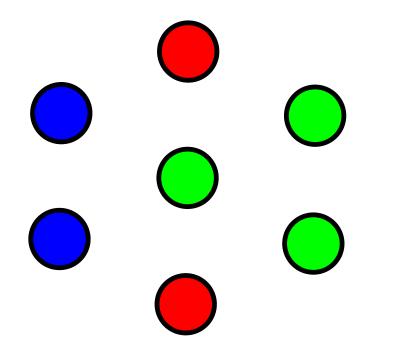
Emanuele Natale www.enatale.name

Supervisors: R. Silvestri, A. Clementi (Tor Vergata)

Research group: L. Becchetti, A. Clementi, F. Pasquale, R. Silvestri, (L. Trevisan) & me

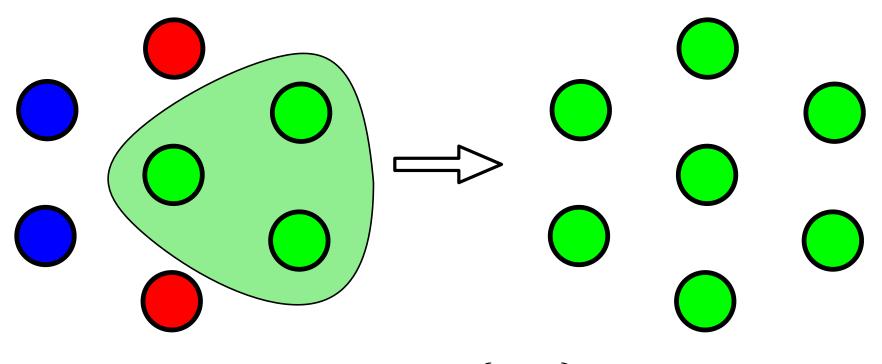
October 12, 2015

The Majority Consensus Problem



The Majority Consensus Problem

The Majority Consensus Problem



 $3 > \max\{2, 2\}$

Scenario: sensor networks, peer-to-peer networks, mobile networks, vehicles networks...

 \implies Distributed, unstructured, dynamical, unreliable, simple systems.

Scenario: sensor networks, peer-to-peer networks, mobile networks, vehicles networks...

 \implies Distributed, unstructured, dynamical, unreliable, simple systems.

In a gossip algorithm the actions of each node u are Local: uses only information from neighbors

Scenario: sensor networks, peer-to-peer networks, mobile networks, vehicles networks...

 \implies Distributed, unstructured, dynamical, unreliable, simple systems.

In a gossip algorithm the actions of each node u are Local: uses only information from neighbors Lightweight: O(polylogn) computation per round and O(polylogn) memory

Scenario: sensor networks, peer-to-peer networks, mobile networks, vehicles networks...

 \implies Distributed, unstructured, dynamical, unreliable, simple systems.

In a gossip algorithm the actions of each node u are Local: uses only information from neighbors Lightweight: O(polylogn) computation per round and O(polylogn) memory Asynchronous: no global clock

Scenario: sensor networks, peer-to-peer networks, mobile networks, vehicles networks...

 \implies Distributed, unstructured, dynamical, unreliable, simple systems.

In a gossip algorithm the actions of each node u are Local: uses only information from neighbors Lightweight: O(polylogn) computation per round and O(polylogn) memory Asynchronous: no global clock Robust: it is not affected by "small" changes in the network

Scenario: sensor networks, peer-to-peer networks, mobile networks, vehicles networks...

 \implies Distributed, unstructured, dynamical, unreliable, simple systems.

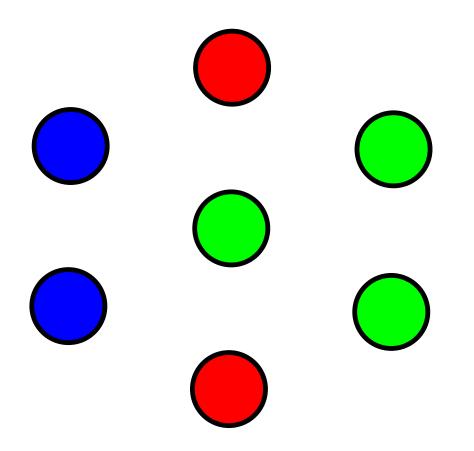
In a gossip algorithm the actions of each node u are Local: uses only information from neighbors Lightweight: O(polylogn) computation per round and O(polylogn) memory Asynchronous: no global clock Robust: it is not affected by "small" changes in the network

Theoretical interest:

what can we do with minimal assumptions?

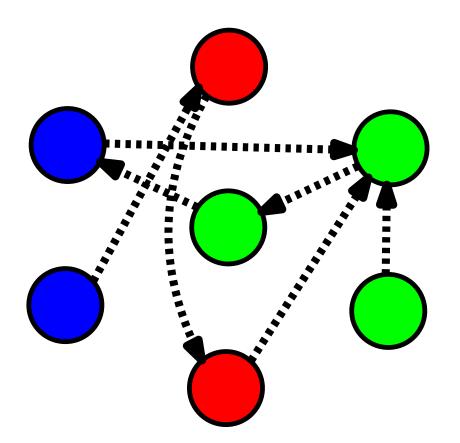
Uniform Gossip Model

At each round, each node can communicate with a finite number of nodes, chosen uniformly at random



Uniform Gossip Model

At each round, each node can communicate with a finite number of nodes, chosen uniformly at random



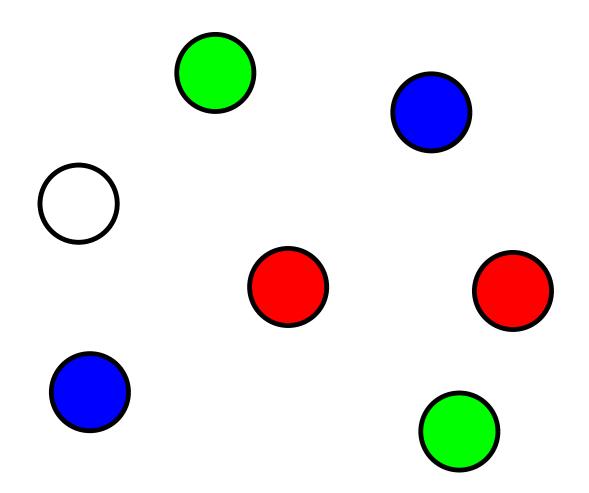
(Some) Related Works

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

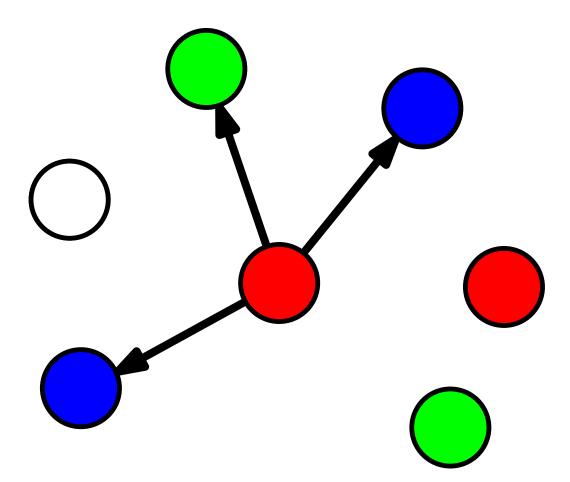
(Some) Related Works

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$		$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$		$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

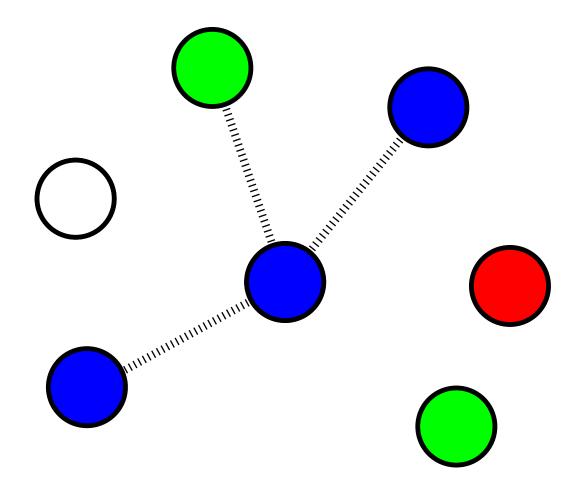
The 3-Majority Protocol



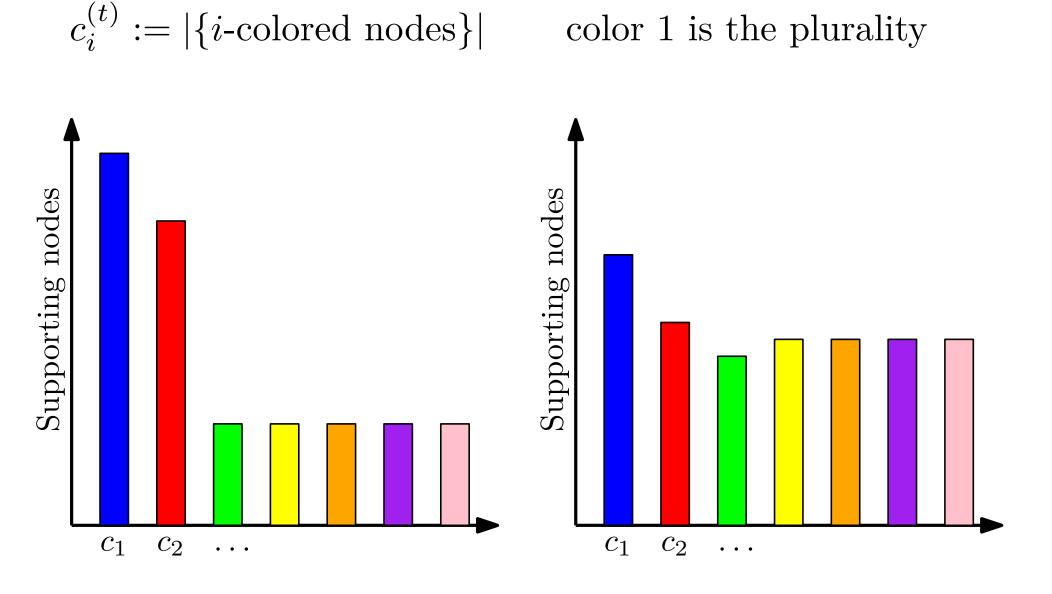
The 3-Majority Protocol



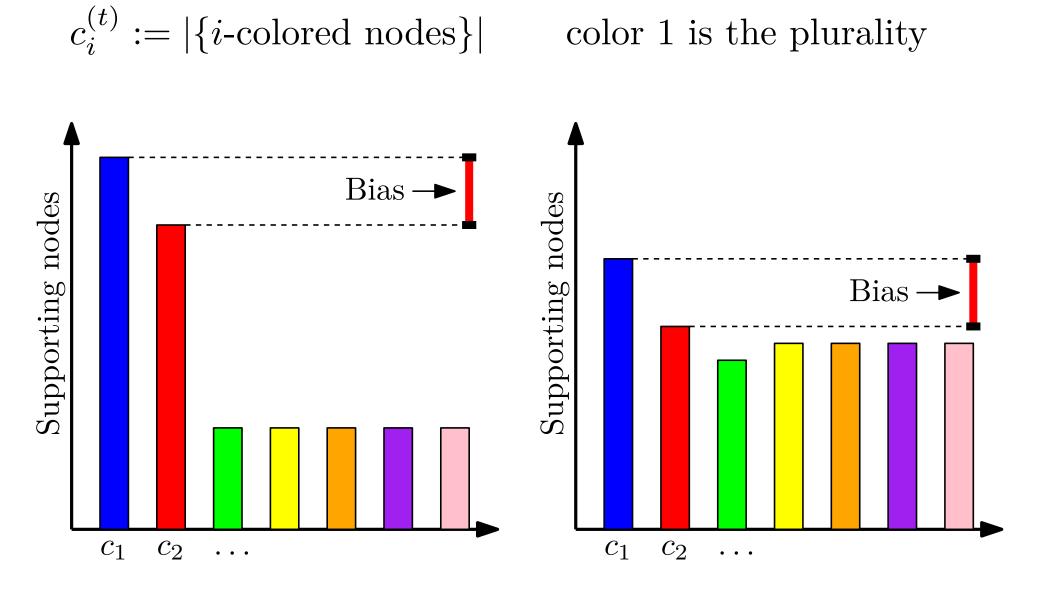
The 3-Majority Protocol



Key Parameter of 3-Majority



Key Parameter of 3-Majority



Thm. From any configuration with $k < \sqrt[3]{n}$ colors, such that

 $s \ge 22\sqrt{2kn\log n},$

Thm. From any configuration with $k < \sqrt[3]{n}$ colors, such that

 $s \ge 22\sqrt{2kn\log n},$

	Mem. &	# of	Time	Comm.
	mess. size	colors	efficiency	Model
SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \log n)$	GOSSIP

Thm. From any configuration with $k < \sqrt[3]{n}$ colors, such that

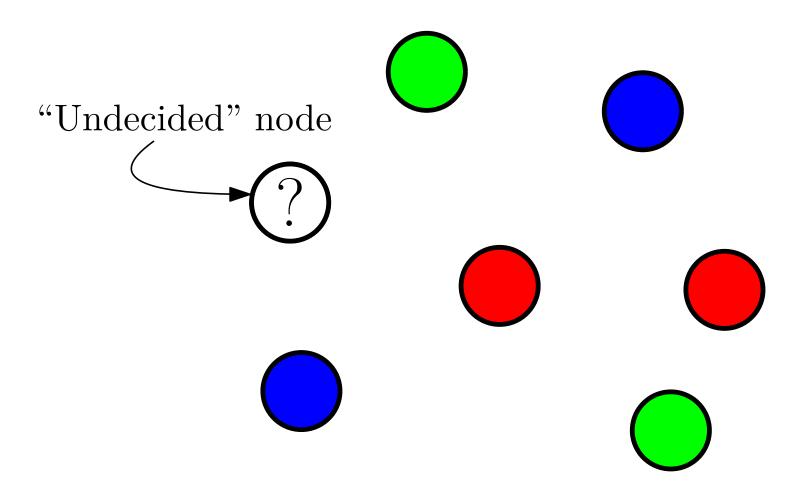
 $s \ge 22\sqrt{2kn\log n},$

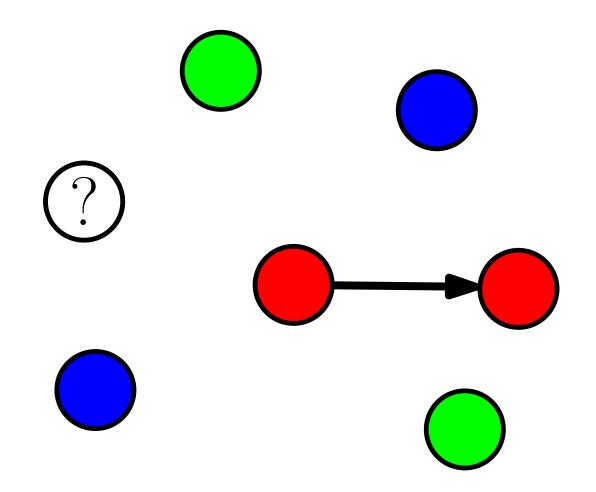
	Mem. &	# of	Time	Comm.
	mess. size	colors	efficiency	Model
SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \log n)$	GOSSIP

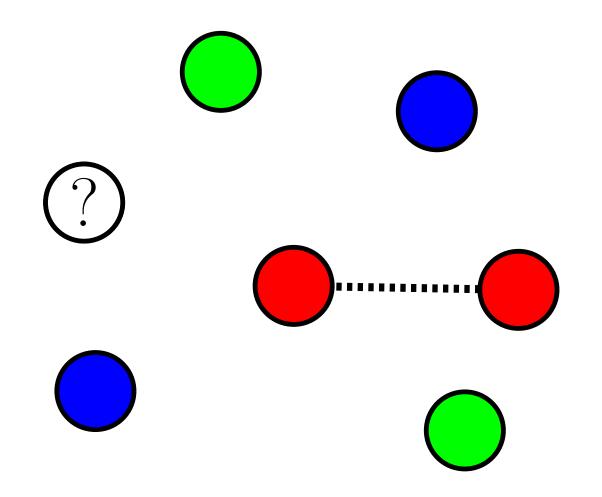
Thm. From any configuration with $k < \sqrt[3]{n}$ colors, such that

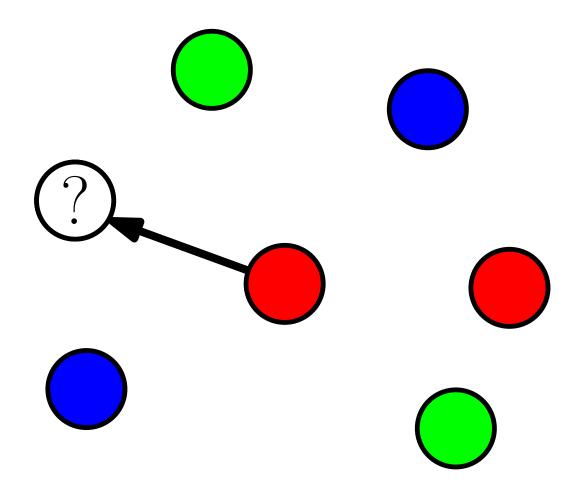
 $s \ge 22\sqrt{2kn\log n},$

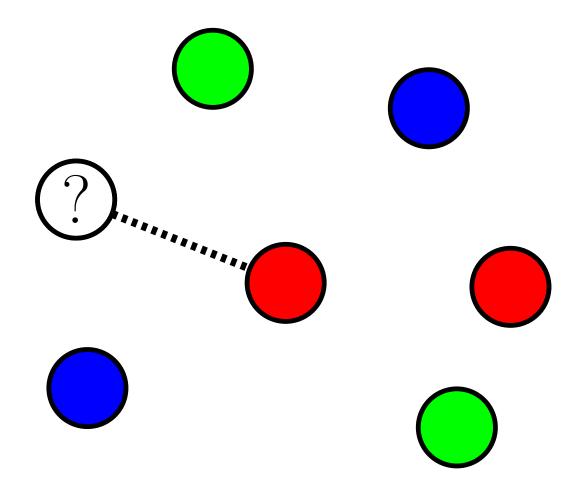
SPAA '14 $O(\log k)$ $n^{\Theta(1)}$ $O(k \log n)$ \mathcal{GOSSIP}		Mem. & mess. size	# of colors	Time efficiency	Comm. Model
	SPAA '14	$O(\log k)$	$n^{\Theta(1)}$		GOSSIP

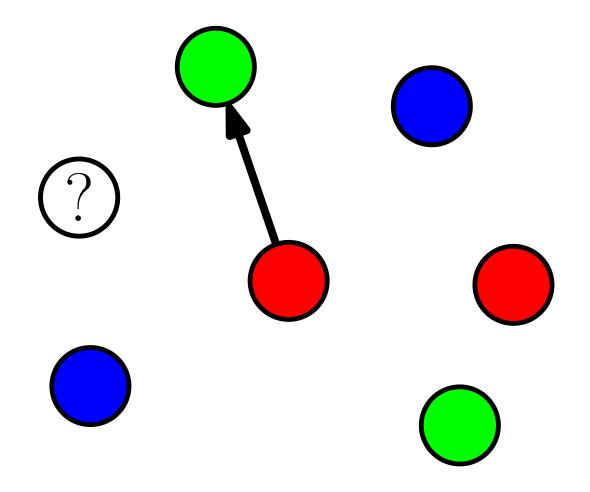


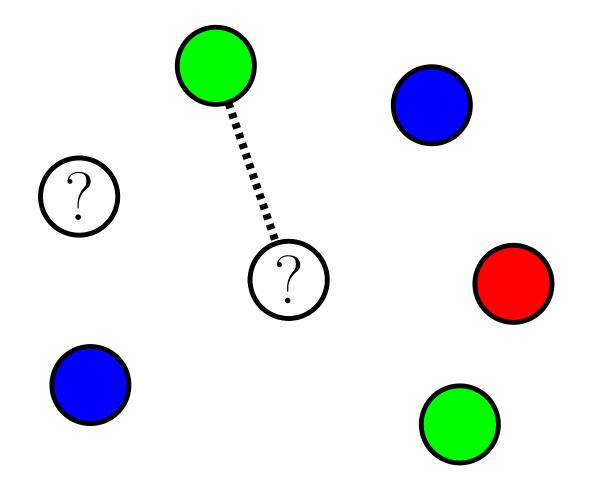


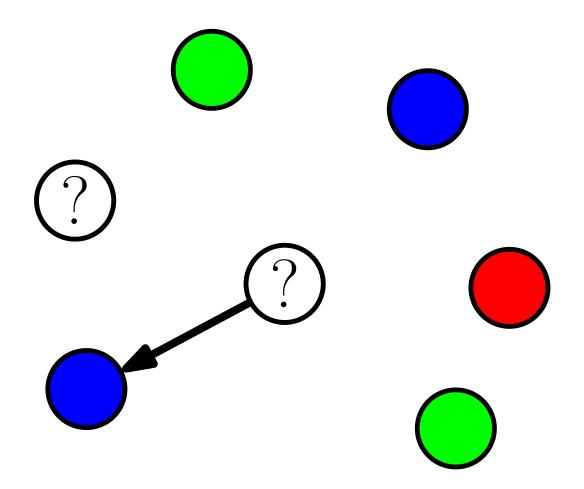


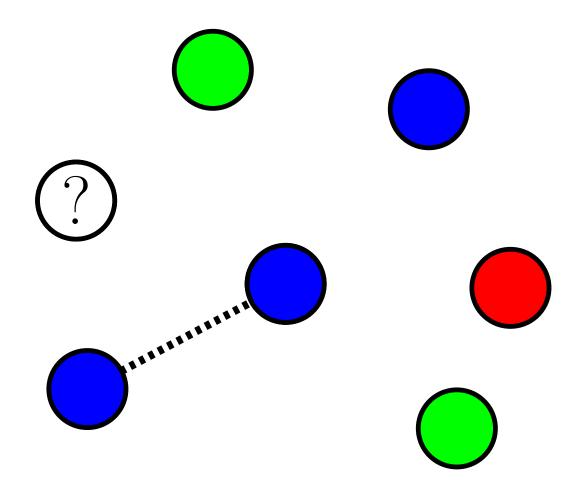












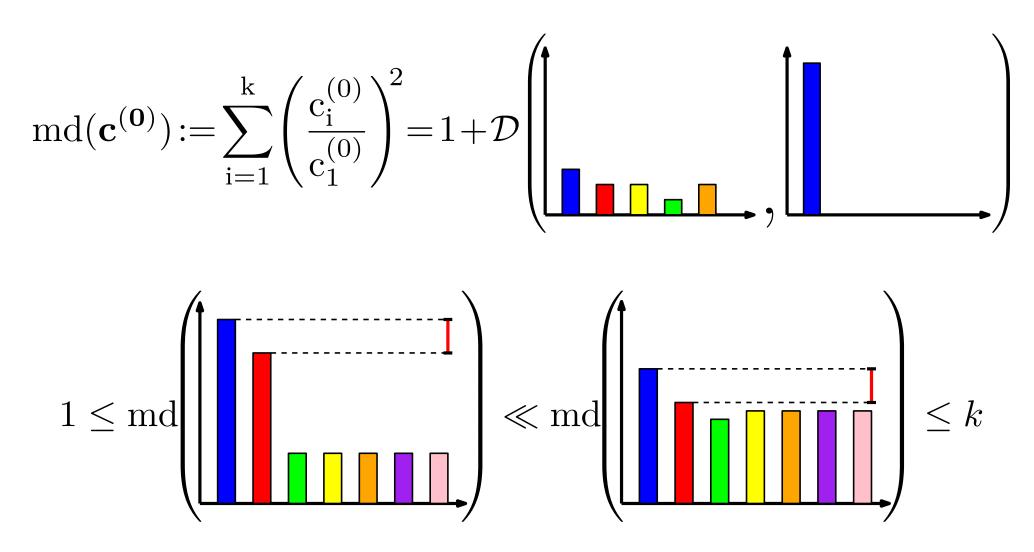
The Monochromatic Distance

 $c_i^{(t)} := \#$ nodes with color i, $\mathbf{c}^{(t)} :=$ configuration at time t.

$$md(\mathbf{c}^{(\mathbf{0})}) := \sum_{i=1}^{k} \left(\frac{c_i^{(0)}}{c_1^{(0)}} \right)^2 = 1 + \mathcal{D}\left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0}$$

The Monochromatic Distance

 $c_i^{(t)} := \#$ nodes with color i, $\mathbf{c}^{(t)} :=$ configuration at time t.



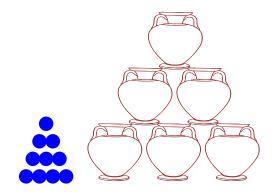
Convergence of the Undecided-State [SODA '15]

Theorem

If $k = O((n/\log n)^{1/3})$ and $c_1 \ge (1 + \epsilon) \cdot c_2$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O(\operatorname{md}(\mathbf{c}^{(0)}) \cdot \log n)$ rounds.

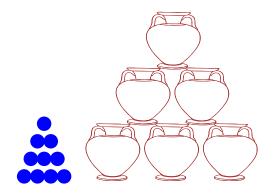
Thank You!

Probabilistic Self-Stabilization: Repeated Balls into Bins [SPAA '15]



Probabilistic Self-Stabilization: Repeated Balls into Bins [SPAA '15]

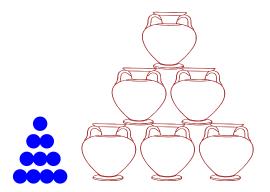
Valid Almost-Consensus against Dynamic Adversaries [SODA '16]

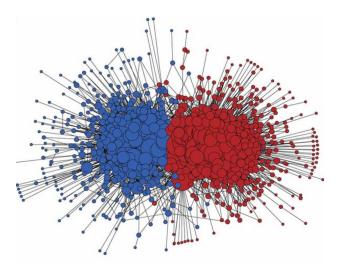


Probabilistic Self-Stabilization: Repeated Balls into Bins [SPAA '15]

Valid Almost-Consensus against Dynamic Adversaries [SODA '16]

Distributed Community Detection in Stochastic Block Models [TCS '15 + Coming soon]

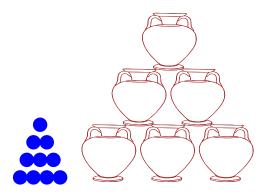


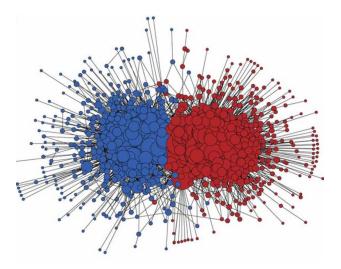


Probabilistic Self-Stabilization: Repeated Balls into Bins [SPAA '15]

Valid Almost-Consensus against Dynamic Adversaries [SODA '16]

Distributed Community Detection in Stochastic Block Models [TCS '15 + Coming soon]





Jan-May at the Simons Institute

Other Stuff with Others

With L. Gualà and S. Leucci: NP-Hardness of Match-3 Games (Candy Crush) [CIG '14]

Other Stuff with Others

With L. Gualà and S. Leucci: NP-Hardness of Match-3 Games (Candy Crush) [CIG '14]

With D. Kaaser and F. Mallmann-Trenn: Deterministic Binary Majority [brief ann. in DISC '15]

Other Stuff with Others

With L. Gualà and S. Leucci: NP-Hardness of Match-3 Games (Candy Crush) [CIG '14]

With D. Kaaser and F. Mallmann-Trenn: Deterministic Binary Majority [brief ann. in DISC '15]

With P. Fraigniaud: "Natural" Consensus with Noisy Communication [Coming soon]

